3_0ՔՍՈՊԻՐԱՆՈ(3,4⊸c)ՊԻՐԻԴԻՆՆԵՐԻ ԱԾԱՆՑՑԱԼՆԵՐԻ ՄԻՆԹԵԶԸ ԻՎ ՊՍԱԿԱՁԵՎ ՀԱՏԿՈՒԹՑՈՒՆՆԵՐԸ

ն, Դ. ՊԱՐՈՆԻԿՑԱՆ, Մ. Ն. ՍԻՐԱԿԱՆՑԱՆ, Գ. Խ. ԳՐԻԳՈՐՑԱՆ և Ա. Ս. ՆՈՐԱՎՑԱՆ

Մշակված հն 3-օքսոպիրանո (3,4-c) պիրիդինների ստացման նոր նզանակներ 2,2-դիմեթիլտետրահիդրոպիրան-4-օնի հիման վրա։ Ուսումնասիրված են սրտի պսակաձև անոթները լայնացնող հատկությունները։

SYNTHESIS OF 3-OXOPYRANO/3,4-c/PYRIDINE'S DERIVATIVES AND INVESTIGATION OF THEIR CORONARY ACTIVITY

Ye. G. PARONIKIAN, S. N. SIRAKANIAN, G. Kh. GRIGORIAN and A. S. NORAVIAN

New methods of preparation of 3-oxopyrano/3,4-c/pyridine's derivatives on the basis of 2,2-dimethyltetrahydropyran-4-ones have been elaborated, which have been tested for coronary activity.

ЛИТЕРАТУРА

- 1. Пат. 6219570 (1987), Япония Kotho T., Otsuka K., Ito T., Kitano Г., Muryama M., Hirayama M. -- C. A., 1987, v. 106, 176194n.
- Negwer M. Organic chemical drugs and their synonyms, Berlin, Acad Verlag, 1987, v. 1 p. 671
- 3. Норавян А. С., Оганесян А. Ш., Басенцян К. Н., Вартинян С. А. Арм. хим. ж., 1983, т. 36. № 2, с. 115.
- 4. Аругюнян Н. С., Абгарян Э. А., Акопян Л. А., Вартанян С. А. Арм. хим. ж., 1987, т. 40, № 9, с. 570.
- 5. Матье Ж. Панико Р., Вейль-Рейналь Ж.— Изменение и введение функции в органическом синтезе. М., Мир. 1980, с. 155.
- 6. Rosowsky A., Parathanasopoulo N. J. Med. Chem., 1974, v. 17, p. 1273.

Армянский химический журнал, т. 42, № 8, стр. 509—513 (1989 г.)

УДК 547.822.3

СИНТЕЗ И СВОИСТВА ЦИКЛОАЛКАНСПИРОПИПЕРИДИНОВ

Р. А. КУРОЯН, Г. М. СНХЧЯН, С. А. ВАРТАНЯН и Н. Л. ГРИГОРЯН

Институт топкой органической химин им. А. Л. Миджояна АН Армянской ССР, Ереван

Поступнло 8 IV 1988

Разработан общий метод синтеза циклоалканспиропиперидинов гидрирозанием с одновременной циклизацией альдегидонитрилов циклопентанового и циклогексанового рядов. Исследованы некоторые превращения спироаминов с целью выявления их биологических свойств.

Табл. 1. библ. ссылок 3.

В продолжение работ [1, 2] по синтезу и изучению биологических свойств спирогетероциклических соединений на основе альдеги-

донитрилов карбоциклических рядов разработан общий метод синтеза циклоалканспиропиперидинов, в которых пиперидиновое кольцо спиросочленено с карбоциклами в третьем положении. Гидрирование и одновременная циклизация альдегидонитрилов I, II проведены в автоклаве при давлении водорода 100 атм и температуре 80° в течение 8 ч в присутствии катализатора никеля Ренея по схеме:

$$(H_2\overset{C}\underset{I,\; \underline{I}}{\overset{C}\underset{I}{\overset{C}}} \times \overset{CHO}\underset{CH_2\overset{100atm,80°}{\overset{H_2,\,Ni/Re}{\cdot}}(H_2\overset{C}\underset{C}{\overset{M}})_n}{\times} \overset{II}\underset{N\overset{II}{\overset{M}}}{\overset{N}}, \overset{I\overset{N}{\overset{N}}}{\overset{N}}$$

С целью изучения биологических свойств на основе синтезированных спирогетероциклических соединений получен ряд производных, функциональные группы в которых удалены друг от друга различным числом метиленовых групп. При взаимодействии спироаминов III и IV с пропаргилбромидом в среде ацетонитрила получены N-пропаргильные производные V, VI, реакцией с хлорацетонитрилом и акрилонитрилом-аминонитрилы VII-X, которые восстановлены тетрагидроалюминатом лития до диаминов XI-XIV. Эфиры XV-XVIII сичтезированы взаимодействием с эфирами бромуксусной, акриловой и броммалоновой кислот; реакцией с хлористым бензилом и 5-фенил-1хлор-2-гексеном получены производные XIX и XX. Аминоамиды XXI— XXIII легко образуются при взаимодействии III, IV с хлорацетамидом и акриламидом, а реакция с фенилизотиоцианатом приводит к тноамиду XXIV. Биспироциклические соединения XXV и XXVI синтезированы конденсацией спироаминов III и IV с 1,2-дибромэтаном и 1,3-дибромпропаном.

R CH2COOEt
$$CH_2CH_2COOCH_3$$
 $(CH_2) CONH_2$ XV_1XV_1 XV_1 XV_2 XV_3 XV_4 XV_4 XV_4 XV_4 XV_4 XV_4 XV_4 XV_5 XV_5

Чистота полученных соединений установлена ГЖХ, а структура подтверждена ИК, ПМР и масс-спектрометрическими методами анализа.

Исследования в области анестезиологии показали, что пропаргильное производное VI и нитрил VII проявляют высокую местноанестезирующую активность, но они оказались токсичными. Изучено также пестицидное действие гидрохлоридов синтезированных соединений. Показапо, что соединения V—VII обладают высокой фунгицидной активностью. Кроме того, у соединения VI обнаружена высокая инсектицидная, а у гидрохлорида соединения VII—высокая гербицидная активность.

Экспериментальная часть

ИК спектры сняты на приборе UR-20, масс-спектры—на МХ-1320 с использованием системы прямого ввода образца в ионный источник, ПМР спектры—на спектрометре «Varian T-60» с рабочей частотой 60 МГц, внутренний стандарт ТМС. ГЖХ выполнена на приборе «Хром-4» с пламенно-ионизационным детектором, колонка 120×0,3 см, неподвижная фаза «Silicon Elastomer E-301» 6% на хроматоне N-AW 0,20—0,25 мм, обработанном ГМДС. Время удерживания (тр) приведено в таблице. Газ-носитель—азот, 0,9—1,2 л/ч. Характеристики соединений V—XXVII приведены в таблице.

7-Азаспиро/4,5/декан (III). В автоклав загружают 9,5 г (0,063) моля) 1-β-цианоэтил-1-формилциклопентана [3] в 30 мл абс. этанола, 2,5 г никеля Ренея и гидрируют при давлении водорода 100 атм и температуре 80° в течение 8 ч. По окончании катализатор отфильтро вывают, отгоняют этанол, остаток перегоняют в вакууме. Получают 4,3 г (49,1%) спироамина III, т. кип. 50—52°/1·мм, п²⁶ 1.4880; d²⁰ 0,9250, m/e 139, время удерживания 2,1 мин/142°. ИК спектр, v, см-1: 3240—3280 (NH). ПМР спектр (ССІ₄), б, м. д.: 1.11—1,75 м (12H, NH, 1,2,3,4,9,10-CH₂), 2,41 с (2H, 6—CH₂); 2,55—3,16 м (2H, 8—CH₂). Найдено, %: С 77,80; Н 12,20; N 10,10. С₉Н₁₇N. Вычислено, %: С 77,63; Н 12,30; N 10,06. Гидрохлорид, г. пл. 107—109°.

2-Азаспиро/5,5/ундекан (IV) получают аналогично III с выходом 44,9%. Т. кип. 70—72°/2 мм; п²⁰ 1,4930; d²⁰ 0,9252; m/e 153. время удерживания 1,3 мин/180°. ИК спектр, v, см⁻¹: 3270—3300 (NH). ПМР спектр (ССІ₄), δ, м. д.: 1,36 ш. с. (14H, NH, 4,5,7,8,9,10.11—СН₂); 2,5 с (2H, 3—СН₂); 2,6 с (2H, 1—СН₂). Найдено, %: С 78,25; Н 12,36; N 9,07. С₁₀Н₁₉N. Вычислено, %: С 78,36; Н 12,49: N 9,13. Гидрохлорид, т. пл. 153—155°.

7-R-7-Азаспиро/4,5/деканы (V, VII). Смесь 1,39 г (0,01 моля) спироамина III, 2 г углекислого калия, 1 мл воды, 5 мл ацетонитрила и 2,8 г (0,01 моля) пропаргилбромида или 0,8 г (0,01 моля) хлорацетонитрила нагревают при 40—45° в течение 5—6 ч. По окончании нагревания подкисляют 18% соляной кислотой и промывают эфиром. Водный раствор обрабатывают конц. раствором углекислого калия и экстрагируют эфиром, сущат сернокислым магнием. После удаления растворителя остаток перегоняют в вакууме.

2-R-2-Азаспиро/5,5/ундеканы (VI, VIII, XVIII, XIX, XX) получают аналогично из спироамина IV и пропаргилбромида, хлорацетонитрила, диэтилового эфира броммалоновой кислоты, хлористого бензила или 5-фенил-1-хлоргексена-2, соответственно.

7-β-Цианоэтил-7-азаспиро/4,5/декан (IX). Смесь 0,02 моля спироамина II и 0,04 моля акрилонитрила напревают при 95—100° 10 ч и пе-

регоняют в вакууме.

2-8-Цианоэтил-2-азаспиро/5,5/ундекан (Х) получают аналогично

из спироамина IV и акрилонитрила.

7-R-7-Азаспиро/4,5/деканы (XI, XIII). К охлажденному в бане со льдом и солью раствору 0,4 г (0,01 моля) тетрагидроалюмината лития в 10 мл сухого эфира по каплям прибавляют раствор 0,033 моля нитрила VII или IX в 15 мл сухого эфира так, чтобы температура реакционной смеси не превышала —5°. При 0° перемешивают массу в течение 1 ч, после чего при —5° последовательно прибавляют по каплям 0,4 мл воды, 0,4 мл 15% раствора едкого натра и 1,2 мл воды. Эфирный раствор сливают с осадка. Последний тщательно промывают эфиром, объединяют эфирные растворы, сущат сернокислым магнием. Отогнав эфир, остаток перегоняют в вакууме.

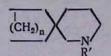
2-R-2-Азаспиро/5,5/ундеканы (XII, XIV) получены аналогично из нитрилов VIII и X восстановлением тетрагидроалюминатом лития.

7-Этоксикарбонилметил-7-азаспиро/4,5/декан (XV). Смесь 0,6 г (0,0043 моля) спироамина III, 0,72 г (0,0043 моля) этилового эфира бромуксусной кислоты, 0,86 г углекислого калия, 0,43 мл воды и 5 мл ацетонитрила нагревают 75° в течение 12—13 ч. Охладив, подкисляют 18% соляной кислотой, экстрагируют эфиром. Водный раствор обрабатывают конц. раствором углекислого калия до сильнощелочной реакции, после чего экстрагируют эфиром. Высушив экстракт сернокислым магнием и отогнав эфир, остаток перегоняют в вакууме.

2-Этоксикарбонилметил-2-азаспиро/5,5/ундекан (XVI) получают аналогично из 0.05 моля спироамина IV и 0,05 моля этилового эфира

бромуксусной кислоты.

2-β-Метоксикарбонилэтил-2-азаспиро/5,5/ундекан (XVII). Смесь 1,9 г (0.012 моля) спироамина IV и 1,4 г (0.015 моля) свежеперегначного метилового эфира акриловой жислоты нагревают при 90—95° 6 ч и перегоняют в вакууме.


7-Карбамоилметил-7-азаспиро/4,5/декан (XXI). Смесь 1,39 г (0,01 моля) спироамина III, 0,95 г (0,01 моля) α-хлорацетамида, 2 г углекислого калия, 1 мл воды и 10 мл ацетонитрила нагревают при 75° 5—6 ч. Экстрагируют эфиром, высушивают сернокислым магинем. Отогнав растворители, остаток перегоняют в вакууме.

2-Карбамоилметил-2-азаспиро/5,5/ундекан (XXII) получают аналогично из 0,019 моля спироамина IV и 0,019 моля а-хлорацетамида.

2-R-2-Азаспиро/5,5/ундекан (XXIII, XXIV). Смесь 0,015 моля спироамина IV в 0,015 моля акриламида или 0,02 моля фенил-изо-тиоцианата нагревают при 80—85° в течение 5—6 ч. Амид XXIII персгоняют в вакууме, а тноамид XXIV перекристаллизовывают из гексана.

Соедине-	пектр,	Спектр ПМР, 8, м. ∂. (в ССІ₄)	Т. ил. гидро- или дигидго- хлоридов, °C
v	-CH ₍₁₎ (≡CH)	2,06 т (1H. C≡CH); 3,15 д (2H, CH ₂ C≡)	160—161
VI	-CH ₂ H)	2,01 т (1H, C≡CH); 3,13 д (2H, CH ₂ C≡)	196—197
VII	_CH ₀ 5 (C≣N)	3,38 c (2H, CH₂CN)	150—151
VIII	-CH N)	3,33 c (2H, CH₂CN)	180—182
IX	—сн. ^{N)}	2,2—2.9 м (4H, 8-CH ₂ ; CH ₂ CN)	205—207
х	-CH 0 (C = N)	2.3-2.6 μ (6H, 3, α,β-CH ₂)	213—215
ΧI	—CH 0 (NH₂)	- 1	сильная гигроскоп.
XII	-CH 0 (NH ₂)	5,1 c (2H, NH ₂)	сильная гигроскоп.
X111	-CH ⁰ (NH ₂)	9 11-11-11	112-114
XIV	-CI1 0 (NH2)	- 1	220-222
xv	-CH 0 (C=O)		50-52
XV1	-CH 0 (C=C)	1.23 т [3H, CH ₃ (этил)]; 4,01 к [2H, CH ₇ (этил)]	120 -122
XVII	-CH ^{О)}	2,35-2.65 м (6H, 3, α,β-CH ₂); 3,58 c (3H, OCH ₃)	208 - 210
XVIII	-CH O)	-	сильная гигроскои.
XIX	-CH ⁵ (C=C ap)	3.33 c (2H, CH ₂ C ₆ H ₅); 7,16 c (5H, C ₆ H ₅)	209-211
xx	$-CH^{5}(C=C a_{i})$	_	192—194
XXI	-CHO (C=O) 50, 3450 (NH ₂)		_
XXII	-CH(O)	2.77 c (2H, NCH ₂ C=O) 7.0 c (2H, NH ₂)	_
XXIII	CH ₂)0 (C-O) '0 (NH ₂)		225—227
XXIV	S-C ⁰ (C-C ap.)	T	_
	-		

Замещенные 7-азаспиро/4,5/деканы и 2-азаспиро/5,5/ундеканы (V-XXVI) (CH ₂) _п														
ā			0/0	Т. кип.,	.50	20	₹R.	ŀ	Іайдено,	0/0	Вычислено, %			
Соедине-	R'	n	Выход,	°С/лл Т, пл., °С	d40	n ²⁰	мин/°С	С	Н	N _(S)	С	Н	N _(S)	
v	-CH ₂ C≡CH	1	67,7	82—83/1,5	1,0085	1,4940	1,5/182	81,40	10,71	7,85	81.29	10,80	7,00	3
VI	-CH ₂ C≡CH	2	72	97-99/2	0,9699	1,4980	2,3/180	81,45	11.19	7,28	81.61	11.06	7,32	3
VII	—CH ₂ C≡N	1	84,3	108-110/2	1,0802	1,4900	2,2/182	74.25	10,10	15.60	7 ,1	10.17	15,71	2
VIII	-CH ₂ C≡N	2	76.9	117—119/2	1,0041	1,4960	1.9;204	74,81	10,43	14.39	74,95	10,48	14,57	2
IX	CH ₂ CH ₂ ≡N	1	75,5	120-122/1	0,9643	1,4880	2,7/200	75,08	10,52	14,60	74,95	10.48	14,57	2
x	CH ₂ CH ₂ C≡N	2	88,9	136—138/2	0,9744	1,4930	_	75,52	10,81	13.44	7:,67	10.75	13.58	2
ΧI	-CH ₂ CH ₂ NH ₂	1	56,3	86-87/0,5	0,5366	1,4910	1,9/200	72,53	12,18	15,25	72,17	12.16	15,36	3
XII	−CH ₂ CH ₂ NH ₂	2	54,8	108110/2	0,9484	2,4961	_	73,51	12,25	14.32	73,41	12.32	14,27	3
XIII	-CH2CH2CH3NH2	1	68,7	99-101/0,5	0,9303	1,4910	2.3/200	73,36	12,31	14,37	73, 1	12,32	14,27	3
XIV	-CH2CH2CH2NH2	2	54,1	119-121/1.5	0,9801	1,4980	_	74,39	12,38	13.25	74,22	12,46	13,31	3
xv	-CH₂COOC₂H₅	1	52	102-104/1	1.0041	1,4780		69,30	10,15	6,19	69,29	10,28	6,21	1
XV1	-CH₂COOC₂H₅	2	25,9	115-117/1,5	1,0030	1,4810	3,2/200	70,09	10,48	5,81	70,25	10,52	5,85	1
xvII	—CH₂CH₂COOCH₃	2	62,7	123-125/1,5	1,0090	1,4830	- 1	70,32	10,44	5.80	70,25	10,52		
XVIII	-CH(COOC ₂ H ₅) ₂	2	51,4	158—160/1,5	1,0521	1,4810	_	65,42	9,19	4,48	85,56	9.38	1.49	

ė			п. 0/0	Т. кип., °С/мм	d20	n ²⁰	τ _R ,	Найдено, %			Вычислено, %			ИК спектр.	Comments	Т. на.
Соедине-	R'	n	Выход	Т, пл., °С	u ₄	ďĎ	мин]°С	С	н	N _(S)	С	н	N _(S)	v, c.n-1	Спектр ПМР, д, .u. д. (в ССІ ₄)	дигиді о- злоридов,
v	–CH₃C≡CH	1	67,7	82—83/1,5	1,0085	1,4940	1,5/182	81,40		7,85	81.29	10,80	7,50	33^0—331⅓ (≡CH)	2,06 τ (1H. C≡CH); 3,15 π (2H. CH ₂ C≡)	160161
VI	CH ₂ C≡CH	2	72	97—99/2	0,9699	1,4980	2,3/180	81,45	10-	7,28	81.61	11 06	7,32	3310 (≡CH)	2,01 т (1H, C = CH); 3,13 д (2H, CH ₂ C =)	196—197
VII	$-CH_0C \equiv N$	1	84,3	108 - 110/2	1,0802	1,4900	2,2/182	74,25	10,10	15.60	7,1	10,17	15,71	2250 -2255 (C≡N)	3,38 c (2H, CH ₂ CN)	150—151
VIII	-CH ₂ C≡N	2	76.9	117—119/2	1,0041	1,4960	1.9/204	74,81	10,43	14.39	74,95	10.48	14.57	2250 (C ≡N)	3,33 c (2H, CH ₂ CN)	180-182
IX	—CH ₂ CH ₂ ≡N	1	75,5	120—122/1	0,9643	1,4880	2,7/200	75,08	10,52	14,60	74,95	10 48	14,57	2270 (C≡N)	2,2—2,9 м (4H, 8-CH ₂ ; CH ₂ CN)	205—207
х	-CH ₃ CH ₂ C≡N	2	88,9	136—138/2	0,9744	1,4930	-	75,52	10,81	13.44	7 ,67	10,75	13.58	2265-2270 (C≡N)	2.3-2.6 m (6H, 3, a, \$-CH ₂)	213-215
ΧI	—CH₂CH₃NH₃	1	56,3	86-87/0.5	0,5366	1.4910	1,9/200	72,53	12,18	15,25	72,17	12.16	15,36	3270-3390 (NH ₂)	_	сильная гигр эскоп,
XII	CH₂CH₂NH₂	2	54,8	108 110/2	0,9484	2,4969	-	73,51	12,25	14,32	73,41	12.32	14,27	3330 - 3430 (NH ₂)	5,1 c (2H, NH ₂)	сильная гигроскоп.
XIII	—CH₃CH₂CH₃NH₂	1	68.7	99-101/0,5	0,9303	1,4910	2.3/200	73,36	12,31	14,37	73, .1	12,32	14,27	3270—3380 (NH ₂)		112-114
XIV	—CH₃CH₂CH₂NH₂	2	54,1	119-121/1.5	0,9801	1,4980	-	74,39	12,38	13.25	74,22	12,46	13,31	3300—3390 (NH ₂)		220-222
xv	−CH ₂ COOC ₂ H ₈	1	52	102-104/1	1.0041	1,4780	-	69,30	10,15	6,19	69,29	10,28	6,21	1750—1760 (C=C)	Grabas	50 52
XVI	—CH₂COOC₂H₅	2	25,9	115 -117/1,5	1.0030	1,4810	3,2/200	70,09	10,48	5,81	70,25	10,52	5,85	1760—1770 (C.=C.)	1.23 т [3H, CH ₃ (этил)]; 4,01 к [2H, CH ₇ (этил)]	120 -122
XVII	—CH₂CH₂COOCH₃	2	62,7	123-125/1,5	1,0090	1,4830	-	70,32	10,44	5.80	70,25	10,52		1760 (C=0)	2,35 -2.65 м (6H, 3, 4,8-CH ₂); 3,58 с (3H, OCH ₃)	208 -210
XVIII	—CH(COOC₂H₅)₂	2	51,4	158—160/1,5	1,0521	1,4810	-	65,42	9,19	4,48	65.56	9.38	1.49	1735 (C=0)	-	сильная гигроской.
XIX	—CH₃C₀H₃	2	49,4	146-147/2	1,0035	1,5330	-	83,70	15,25	5,66	83,89	10,35	5,76	1500, 1605 (C=C ap)	3.33 c (2H, $\frac{CH_2C_0H_5}{C_0H_5}$); 7,16 c (5H, $\frac{C_0H_5}{C_0H_5}$)	209 – 211
XX	–СН ₂ СН=СНСН ₂ СН(СН ₃)С₀Н₅	2	49,3	196—183/1	0,9763	1,5280	-	84,77	10,50	4,30	84,82	10.68	4,49	1505 1615 (C = C a ₁) 1680 (C ⇒ C)		192 – 194
XXI	—CH₃CONH ₂	1	81.6	68-70 (вода)	-	-	-	67,20	10,13	14,23	67,30	10,27	14,27	1690 1700 (C = O) 3340 3350, 3450 (NH ₂)	-	-
XXII	—CH₂CONH₂	2	58,3	73—74 (этачол)	_	-	-	68,40	10,49	13,35	68,53		13.32	1,95 (C=0) 3435 (NH ₂)	2.77 c (2H, NCH ₂ C O) 7.0 c (2H, NH ₂)	
XXIII	CH ₂ —CH ₂ CONH ₂	2	68,5	183185/1	1,0380	1.5150	-	69,45	10,79	12,35	60,59	10,78	12,48	1670—1700 (C-O) 3300—3370 (NH ₂)		225—227
XXIV	S = C-NHC _n H ₅	2	74,4	146—148 (гексан)	-	_	-	70,81	8,22	9.63 2(11,0,)	70,78	8,39	9.71 (11.12)	1520, 1590 (C C ap.) 3190—3320 (NH)	_	_

1,2-Ди-(2-азаспиро/5,5/ундекан-2-ил) этан (XXV). Смесь 4,1 г (0,027 моля) спироамина IV. 2,5 г (0,0135 моля) 1,2-дибромэтана, 5,4 г углекислого калия, 2,7 мл воды и 10 мл ацетонитрила нагревают при 75—80° в течение 7 ч. Подкисляют 18% соляной кислотой, экстрагируют эфиром, водный раствор подщелачивают конц. раствором углекислого калия и экстрагируют эфиром. Сушат сернокислым магнием. Отогнав эфир, остаток перегоняют в вакууме. Получают 3 г (66,8%) спироамина XXV, т. кип. 190—191°/1 мм, n20 1,5130, d20 0,9805. ПМР спектр (ССІ4), б, м. д.: 1,31 ш. с. (28H, 4',5',7',8',9',10'11', 4",5",7",8",9",10",11"—СН2), 2,0—2,5 м (12H, 1,2,1',3',1",3"—СН2). Найдено, %: С 79,30; Н 12,0; N 8,51. С22H40N2. Вычислено, %: С 79.45; Н 12,12; N 8,42. Гидрохлорид, т. пл. 278—280°.

1,3-Ди-(2-азаспиро/5,5/ундекан-2-ил) пропан (XXVI). Аналогично XXIV из 3 ε (0,02 моля) спироамина IV и 2 ε (0,01 моля) 1,3-дибромпропана в присутствии 4 ε углекислого калия получают 2,2 ε (63,4%) XXVI; т. жип. 191—193°/1 мм; n_D^{20} 1,5090; d_{ε}^{20} 0,9708. ПМР спектр (CCl₄), δ , м. д.: 1,33 ш. с. (30H, 2,4′,5′,7′,8′,9′,10′,11′4″,5″,7″,8″,9″,10″, 11″—CH₂) 2,23—2,5 м (12H, 1,3,1′,3′,1″,3″—CH₂). Найдено, %: С 79,58; H 12,15; N 8,11. $C_{23}H_{42}N_2$. Вычислено, %: С 79,70; H 12,71;

N 8,08. Гидрохлорид, т. пл. 248-250°.

ՑԻԿԼՈԱԼԿԱՆՍՊԻՐՈՊԻՊԵՐԻԴԻՆՆԵՐԻ ՍԷՆԹԵԶԸ ԵՎ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ

Ռ. Հ. ԿՈՒՌՈՑԱՆ, Գ. Մ. ՍՆԻՉՑԱՆ, Ս. Հ. ՎԱՐԴԱՆՑԱՆ L Ն. Լ. ԳՐԻԳՈՐՑԱՆ

3իկլոպենտանի և ցիկլոհեքսանի շարքի ալդեհիդոնիտրիլների հիդրման և ցիկլացման հետևանքով մշակված է ցիկլոալկանսպիրոպիպերիդինների սինթեզի ընդհանուր մեթոդ։ Ստացվել են նշված սպիրոպմինների մի շարք ածանցյալներ նրանց կենսաբանական վարքը պարզաբանելու համար։

SYNTHESIS AND PROPERTIES OF CYCLOALKANESPIROPIPERIDINES

R. H. KUROYAN, G. M. SENEKHCHIAN, S. H. VARTANIAN and N. L. GRIGORIAN

A general method for synthesis of cycloalkanespiropiperidines has been elaborated based on hydrogenation and cyclozation reactions of aldehydonitriles of cyclopentane and cyclohexane series. A number of derivatives of the above-mentioned spiroamines have been obtained with the object of elucidating their biological activity.

ЛИТЕРАТУРА

- 1. Куроян Р. А., Сихчян Г. М., Вартанян С. А., Пароникян Р. В. Арм. хим. ж.. 1982, т. 35, № 10, с. 651.
- 2. Куроян Р. А., Сихчян Г. М., Вартанян С. А. Аря. хим. ж., 1984, т. 37, № б. с. 360—367.
- 3. Пат. M 2255 (1964), Франция/Hollingworth H. D., Oldfield W., Birchall G. A. Hill P. C. A., 1964, v. 61, 579g.