Армянский химический журнал, т. 42, №8, стр. 483—487 (1989 г.)

ОБЩАЯ И ФИЗИЧЕСКАЯ ХИМИЯ

УДК 548.737

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА ДИЭТИЛСУЛЬФОКСИДА

А. А. КАРАПЕТЯН, Ш. А. МАРКАРЯН, М. Ю. АНТИПИН и Ю. Т. СТРУЧКОВ

Ивститут тонкой органической химии АН Армянской ССР, Ереван Ереванский государственный университет

Поступило 17 І 1989

Проведено рентгеноструктурное исследование монокристаллов диэтилсульфоксида (ДЭСО) при температуре—80°. Два контакта типа О ... НС могут рассматриваться кам слабые межмолекулярные водородные связи.

Рис. 2, табл. 3, библ. ссылок 8.

С точки зрения структурной химии серусодержащих органических соединений сульфоксиды отличаются рядом особенностей, в частности, специфическим, и в то же время общим свойством их самоассоциации [1]. При этом важным вопросом является выяснение мехаиизма ассоциации, электронного строения S = 0 группы и его влияния на реакционную способность сульфоксидов [2].

В предыдущих работах было показано, что именно ассоциация по

типу SO ... HC, а не по диполь-дипольному типу SS, onpe-

деляет спектральные и физико-химические свойства растворов диалкилсульфоксидов [3]. В этой связи представляет интерес определение кристаллической и молекулярной структуры ДЭСО, ранее не исследованной.

Экспериментальная часть

Монокристалл, пригодный для рентгеноструктурного исследования, был получен непосредственно на дифрактометре «Синтекс P2₁» с низкотемпературной приставкой медленным охлаждением жидкости вблизи точки плавления (≈ —30°), запаянной в тонкостенный капилляр диаметром 0,2 мм. Определение параметров элементарной ячейки в дифракционный эксперимент с использованием МоК_а —излучения проводились при температуре —80°.

Кристаллы моноклинныс: при -80° , a = 5,617 (5), b = 13,187 (14), c = 8,011 (7) Å, $\beta = 90,09$ (7)°, V = 593 (2) Å³, $d_{BMV.} = 1,19 z/c.w^3$, z = 4, пространственная группа $P2_1/n$.

В области 2° < 20° < 60° методом 0/20 сканирования измерено 1188 отражений, из которых 849 оказались ненулевыми. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в блок-диагнональном анизотропном приближении для неводородных атомов. Положение атомов водорода, локализованных в разностном синтезе электронной плотности, уточнено изотропно Окончательное значение факторов расходимости R = 0,068 и $R_* = 0,070$ по 778 отражениям с $F^2 \ge 4,5 \sigma$. Все расчеты проведены по программам INEXTL [4] на ЭВМ «Эклипс S/200».

Описание структуры

Стросние молекулы с длинами связей и нумерацией атомов показано на рис. 1. В табл. 1 приведены координаты атомов и их температурные параметры. В табл. 2 приведены значения валентных углов. Длина связи S—O 1,496 (4) Å в пределах Зэ совпадает с аналогичным значением 1,513 (5) Å, найденным в структуре диметилсульфоксида (ДМСО) [5, 6]. В отличие от ДМСО [5]. где значения длян связей S—C разные (1,771 и 1,805 Å), в ДЭСО они фактически совпадают и составляют S—C (1) 1,797 (5) и S—C (3) 1,795 (5) Å. Значения длян связей C (1)—C (2) и C (3)—C (4) одинаковы и составляют 1,496 (8) Å. Фактически одинаковы также и валентные углы OSC (1) 106,9 (2) и OSC (3) 106,5 (2), SC (1) C (2) 111,4 (2) и SC (3) C (4) 111,6 (2)^o. Значеныя валентных углов O—S—C, а также значение валентного угла C (1)—S—C (3) 97,3 (2)^o в пределах 2^j совпадают с аналогичными величинами, найденными для ДМСО [5].

Рис. 1. Строение молекулы ДЭСО с длинами связей и нумерацией атомов.

Попарное равенство однотипных геометрических характеристик, а именно, равенство связей S-C (1) и S-C (3), C (1)-C (2) и C (3)-C (4) и углов O-S-C (1) и O-S-C (3), S-C (1)-C (2) и S-C (3)-C (4), а также попарное равенство внутримолекулярных невалентных расстояний (приведенных в табл. 3) и копланарность трехатомных фрагментов S, C (1), C (2) и S, C (3), C (4) (двугранный угол между их плоскостями равен 6°) указывают на то, что молекула ДЭСО в пределах 20 обладает собственной симметрией $C_m(C_s)$,

В молекуле ДЭСО, как и в ДМСО, атом серы имеет сильно выраженную пирамидальную конфигурацию. Об этом свидетельствует сумма валентных углов при атоме серы, равная 310,7°, и выход атома S из плоскости атомов О, С (1) и С (3) на 0,701 Å (в ДМСО эти соответственно равны 310,9° и 0,705 Å [5]).

В кристалле среди межмолекулярных контактов выделяются два контакта типа О... Н, что меньше суммы ван-дер-ваальсовых раднусов атомов О и Н (2,72 [7], 2,69 [8]). Это указывает на наличие слабых специфических межмолекулярных взаимодействий типа О,.. НС (рис. 2). Эти контакты можно рассматривать как слабые водородные связи с параметрами О...С (1) (-0,5 + x, -0,5 + y, -0,5 + z), (О...С 3,46 (1), О...H (1А) 2,65 (4), H-С 0,90 (4) А, О...H-С 150 (3)⁵) и О...С (3) (-0,5 + x, -0,5 + y, -0,5 + z) (О...С 3,40 (1), О...H (3B) 2,58 (4), H-С 0,92 (4) А, О...H-С 147 (3)⁵).

Таблица 1

Атом	.x/a (0)	y/b (s)	z/c (3)	В ^{экв} ^{нзо}	
S	-806 (2)	-2122 (1)	-1128 (1)	3,22 (2)	
0	-1925 (6)	—1793 (3)	-2734 (4)	4,44 (9)	
C (1)	-528 (9)		-1215 (7)	4,30 (1)	
C (2)	-2913 (10)	-3981 (4)	-1272 (7)	5,10 (2)	
C (3)	-2305 (8)	-1828 (4)	-1288 (6)	4.00 (1)	
C (4)	2722 (9)	-709 (4)	-1373 (7)	5,00 (2)	
H (1A)	25 (8)	-366 (3)	-29 (5)	4(1)	
H (1B)	42 (9)		- 224 (6)	5 (1)	
H (2A)	-265 (10)	-471 (4)	-133 (6)	6 (1)	
H (2B)	- 386 (8)	-379 (3)	-211 (5)	4,0 (9)	
H (2C)	-375 (9)		-44 (6)	6(1)	
H (3A)	294 (8)	-221 (3)	-235 (6)	4,1 (9)	
H (3B)	307 (8)	-208 (3)		4(1)	
H (4A)	241 (10)	-38 (4)	46 (6)	6 (1)	
H (4B)	192 (10)	-41 (4)	-222 (6)	6 (1)	
H (4C)	443 (8)	-62 (3)	-138 (5)	4 (1)	

Координаты атомов в $\times 10^4$ ($\times 10^3$ для атомов Н) и их эквивалентные изотропные температурные параметры

1 HU / HKL 2	7	al	5.1	u	ua	2
--------------	---	----	-----	---	----	---

Building and Stand of (1944)					
Угол	v) (7)	Угол	ω (7)		
0-S-C (1)	106,9 (2)	0-S-C (3)	106,5 (2)		
S-C (1)C (2)	111,4(4)	S-C (3)C (4)	111,6 (1)		
S-C (1)-H (1A)	106 (3)	S-C (3)-11 (3A)	107 (2)		
S-C (1)-H (1B)	100 (3)	S-C (3)-H (3B)	109 (3)		
H (1A)-C (1)-H (1B)	114 (4)	H (3A)-C (3)-H (3B)	109 (4)		
C (1)C (2)-H (2A)	108 (3)	C (3)-C (4)-H (4A)	115 (3)		
С (1)-С (2)-Н (2В)	115 (3)	C (3)-C (4)-H (4B)	113 (3)		
C (1)-C (2)-H (2C)	110 (3)	C (3)-C (4)-H (4C)	106 (3)		
H (2A)-C (2)-H (2B)	110 (4)	H (4A)-C (4)-H (4B)	108 (5)		
H (2A)-C (2)-H (2C)	114 (5)	H (4A)-C (4)-H (4C)	98 (4)		
H (2B)-C (2)-H (2C)	100 (4)	H (4B)-C (4)-H (4C)	116 (4)		
C (1)—S—C (3)	97,3 (3)	and an other starts			

Аналогичные контакты найдены в кристаллах ДМСО. Однако для растворов ДМСО существование СН ... ОЅ связей трудно подтвер-

дить на основании спектральных исследований. Между тем, концентрационные зависимости ЯМР и ИК параметров ДЭСО объясняются на основе ассоциации их молекул по типу водородной связи [1, 3]. Именно на основании этой модели предстатляется автопротолиз диалкилсульфоксидов.

DHytphiloachyakpinke nebaachinke pactioning				
S-C (2)	2,725 (5)	S-C (4)	2,728 (5)	
S-H (1A)	2,226 (4)	S—H (3A)	2,33 (5)	
S—H (1B)	2,20 (5)	S—H (3B)	2,26 (4)	
S-H (2A)	3,56 (5)	S-H (4A)	2,97 (5)	
S-H (2B)	2,90 (4)	SH (4B)	2,87 (5)	
S-H (2C)	2,81 (5)	S-H (4C)	3,55 (5)	
O-C (1)	2,652 (6)	O-C (3)	2,642 (6)	
O-C (2)	3,164 (6)	O-C (4)	3,168 (6)	
O-H (1A)	3,37 (4)	· O—H (3A)	2,80 (5)	
0 –H (1B)	2,70 (5)	O-H (3B)	3,41 (4)	
OH (2A)	4,02 (5)	0-H (4A)	3,56 (5)	
О-Н (2В)	2,89 (4)	O-H (4B)	2,86 (5)	
0-11 (2C)	3.38 (5)	0-H (4C)	4,04 (5)	

Таблица З

Рис. 2. Проекция в кристаланческой структуре ДЭСО.

<u>ԴԻԷՔԻԼՍՈՒԼՖՕՔՍԻԴԻ ԲՑՈՒՐԵՂԱԿԱՆ ԵՎ ՄՈԼԵԿՈՒԼՅԱՐ ԿԱՌՈՒՑՎԱԾՔԸ</u>

2. Ա. ԿԱՐԱՊԵՏՅԱՆ, Շ. Ա. ՄԱՐԳԱՐՏԱՆ, Մ. Ցու. ԱՆՏԻՊԻՆ և Ցու. Տ. ՍՏՐՈՒՉԿՈՎ

Արված է դիէթիլսուլֆօբսիդի մոնոբյուրեղների լրիվ ռենտգենոկառուցվածքային հետազոտությունը —80°-ում։ Մանրամասն ուսումնասիրված են բյուրեղի միջմոլեկուլային կոնտակները։ Գնտված են երկու կոնտակտ O...HC տիպի, որոնք բնութագրվում են որպես թույլ ջրածնական կապեր։ Ստացված արդյունքները լրացնում են սուլֆօբսիդի կառուցվածքի մասին եղած պատկերացումները։

THE CRYSTAL AND MOLECULAR STRUCTURE OF DIETHYLSULFOXIDE

H. A. KARAPETYAN, Sh. A. MARGARIAN, M. Yu. ANTIPIN and Yu. T. STRUCHKOV

The exhaustive X-ray structural investigations of diethylsulioxide single crystals at -80° has been carried out. Intermolecular contacts within the crystal has been examined in detail. It has been found out two contacts of O ... HC type, featured as weak intermolecular H-bonds. The results obtained enriches our knowledges about structure of sulf-oxides.

ЛИТЕРАТУРА

- 1. Markarian S. A., Grigorian K. R., Simonian L. K. J. Chem. Soc., Faraday Trans 1, 1987; v. 83, p. 1189.
- 2. Дарст Т. Общая органическая химия, т. 5, с. 253.
- 3. Маркирян Ш. А., Арутюнян Р. С., Григорян В. В., Бейлерян Н. М. Изв. вузов. Хим. и хим. технология, 1985, т. 28, № 18, с. 9.
- 4. Герр Р. Г., Яновский А. И., Стручков Ю. Т.-Кристаллография, 1983, т. 29, с. 1029.
- 5. Thomas R., Shocmaker K. B., Friks K. Acta Crystallogr., 1966, v. 21, p. 1, Ne 1, p. 12.
- 6. Харгиттаи И. Структурная химня соединений серы. М., Наука, 1986, с. 264.
- 7. Bondi A. J. Phys. Chem., 1964, v. 68, p. 441.

8. Китайгородский А. И. — Молекулярные кристаллы. М., Наука, 1971.

Армянский химический журнал, т. 42, № 8, стр. 487—491 (1989 г.)

НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 546.284+531.731.43

ВЛИЯНИЕ ТЕМПЕРАТУРЫ ТЕРМООБРАБОТКИ И ФАЗОВОГО СОСТАВА НА ПОРИСТУЮ СТРУКТУРУ КРЕМНИЙ ОКСИДА ПЕРЕРАБОТАННОГО

А. А. ВАРУЖАНЯН и А. О. ОГАНЕСЯН

Институт общей и исорганической химии АН Армянской ССР, Ереван

Поступило З II 1988

Исследована пористая структура модификаций кремний оксида переработанного методом ртутной порометрии. Определена зависимость размера и распределения объема пор по их эквивалентным радиусам от условий термообработки и фазового состава. Показана взаимосвязь температуры термообработки, фазового состава КОП и значений общей, открытой и закрытой пористости.

Рис. 2, табл. 1, библ. ссылок 4.

Кремний оксид переработанный (КОП)—новое и перспективное сырье, предназначенное для получения различных оптических стекол и жаропрочного прозрачного кварцевого стекла. Для получения таких материалов с различными специфическими характеристиками целевого назначения необходимо сырье с изначально заданными ха-