ЛИТЕРАТУРА

- 1. Погосян Л. Е., Авакян С. Н. Коорд. химия, 1977, т. 3. № 7. с. 1039.
- 2. Азизов М. А., Худайбердиев Э. Х., Алявия М. К. Коорд. химия: 1981, т. 7. No 8, с. 1209.
 - 3. Авакян С. Н., Айрапетян В. А., Погосян Л. Е., Авасян С. С. Коорд. химия, 1986, т. 12, № 8, с. 1096.
 - 4. Авакян С. Н., Айрапетян В. А.: Авагян С. С., Бабаханян А. В. Коорд. химия, 1986, т. 12. № 10. с. 1368.
 - 5. Селвуд C. Магнитохимия, М., 1958, с. 438.
 - 6. Льюис Дж., Уилкин Р. Современная химия координационных соединений. М., 1963, с. 445.
 - 7. Айвазов Б. Б. Введение в хроматографию. М., Химия, 1983, с. 102.
- 8. Липсон Г., Стипа Г. Интерпретация порошковых рентгенограмм. М., Мир. 1972, с. 210.
 - Климов В. А.— Основные микрометоды анализа органических соединений. М., Химия, 1967.
 - 10. Абрамян А. А., Погосян Л. Е. Арм. хим., ж., 1966. т. 19. с. 183.

Армянский химический журнал, т. 42, № 7, стр. 470—473 (1989 г.)

УДК 547.831.735

СИНТЕЗ 2-АЛКОКСИМЕТИЛ-4-МЕТИЛТИЕНО/2,3-В/ХИНОЛИНОВ

Л. В. ГЮЛЬБУДАГЯН и Н. Л. АЛЕКСАНЯН Ереванский государственный университет

Поступило 27 XI 1987

В литературе описаны синтезы угловых [1, 2] и липенных [3, 4] тиенохиполинов на основе 3-винил- или 3-аллилироизводных 4- или 2-меркаптохинолинов. Угловые дигидротненохиполины получены из 3-аллил-4-меркаптохинолинов нагреванием в 40% бромистоводородной кислоте [5]. В некоторых случаях при тиоклайзеновской перегруппировке 4-аллилтиоксохинолинов в качестве основных продуктов получаются соответствующие дигидротнено/3,2-с/хиполины [6]. По-видимому, образовавшийся при перегруппировке 3-аллил-4-меркантохинолин подвергается дальнейшей термической циклизации.

С целью получения тиенохинолинов нами исследована возможность получения 2-меркапто-3-(3',3'-дихлораллил)-4-метилхинолина. Взаимодействием 2-хлор-3-(3',3'-дихлораллил)-4-метилхинолина (1) [7] с тиомочевиной в среде ацетона получен хлористый 2-хинолилтиуроний II, гидролизом которого предполагалось получить в свободном виде 2-меркапто-3-(3',3'-дихлораллил)-4-метилхинолии. Однако вместо этого был получен продукт его циклизации—2-дихлорметил-1-метил-2,3-дигидротиено/2,3-в/хинолии. По-видимому, образовавшаяся меркапто-группа, будучи сильным нуклеофилом, атакуст β-углеродный атом в дихлораллильной группе с замыканием дигидротиофенового цикла.

Интересное превращение происходит при взаимодействии полученного 2-дихлорметилдигидротиенохинолина (III) с нуклеофилами (OH, OR). Сначала под действием нуклеофила происходит отщепление хлористого водорода с дальнейшей ароматизацией кольца. Образовавшийся хлорид бензильного типа легко подвергается нуклеофильному замещению второй молекулой нуклеофила, приводящему к 2-окси- (IV) и 2-алкокси- (V—XII) метил-4-метилтиено/2,3-в/хинолинам.

Экспериментальная часть

ПМР спектры сняты на спектрометре «Varian», рабочая частота 60МГц, в четыреххлористом углероде, в качестве внутреннего стандарта использован ТМС. Чистота полученных соединений установлена методом ТСХ (на окиси алюминия II степени активности, проявитель—пары иода).

Хлористый S-/3-(3',3'-дихлораллил)-4-метил-2-хинолин/тиуроний (II). Смесь 28,65 г (0,1 моля) соединения I [7] и 9,98 г (0,13 моля) тиомочевины в 100 мл безводного ацетона нагревают на водяной бане 5 ч. После охлаждения полученные желтые кристаллы отфильтровывают и промывают безводным ацетоном. Выход 34,4 г (95%), т. пл. 142—143°. Найдено, %: С 46,51; Н 3,77; С1 29,06; N 11,62; S 8,89. С₁₄Н₁₄Сl₃N₃S. Вычислено, %: С 46,34; Н 3,86; С1 29,37; N 11,59; S 8,83.

2-Дихлорметил-4-метил-2,3-дигидротиено/2,3-в/хинолин (III). Водный раствор 36,25 г (0,1 моля) тиурониевой соли II подщелачивают до рН 10. Смесь нагревают 1 ч, после чего осадок отфильтровывают и перекристаллизовывают из спирта или четыреххлористого углерода. Выход 24,2 г (85%), т. пл. 116°, R_f 0,47 (бензол-гексан, 3:1). ПМР спектр, δ, м. д.: 2,75 с (3H, CH₃); 3,75 д (2H, CH₂); 4,67 кв (H, CH); 6,1 д (H, CHCl₂); 7,7—8,1 м (4H, аром.). Найдено, %: С 55,21,

Н 3,75; C1 25,26; N 4,97; S 11,40. С₁₃H₁₁Cl₂NS. Вычислено. %: С 54,93; H 3.87; Cl 25.00; N 4.93; S 11.27.

2-Алкоксиметил-4-метилтиено/2,3-8/хинолины (IV-XII). K 0.02 моля спиртово-водному раствору щелочи или алкоголяту, приготовленному из 30 мл соответствующего спирта и 0,46 г (0.02 моля) металлического натрия, прибавляют 0,01 моля соединения III. Смесь нагревают на водяной бане 2 ч. затем спирт отгоняют, остаток обрабатывают водой, экстрагируют хлороформом. После удаления хлороформа получают соединения IV-XII (табл. 1, 2).

2-Алкоксиметил-4-метилтиено 2,3-в хинодины (IV-XII)

Соедине-	R	BLXOA, 0/0	Т. пл. гидро- хлорилов	R _f	Найдено, 00				Вычислено. 00			
					С	Н	N	S	С	н	N	s
IV	Н	79	177—178	0.42	68,29	4,96	5,97	14,05	68,12	4,80	6.11	13,97
v	CH,	83	197 -198	0.40	69,00	5,51	5,89	13,31	69,14	5,35	5,76	13.17
VI	C ₂ H ₅	77	185—186	0,48	69.95	5,93	5,59	12,68	70,04	5,84	5,46	12,45
VII	C ₃ H ₇	86	165—166	0,47	70,99	6,34	5,29	11,97	70,85	6,27	5,17	11,81
VIII	I-C ₃ H ₇	80	170—171	0,49	71,02	6,42	5,33	11,73	70,85	6,27	5,17	11,81
1X	C ₄ H ₉	76	115-116	0,52	71.76	6,81	5,08	11,41	71,58	6,67	4,91	11,23
X	I-C4He	78	162—163	0,50	71,47	6,49	4,84	11,04	71.58	6,67	4,91	11,23
XI	C ₈ H ₁₁	82	135—136	0,51	72,05	6,97	4,81	10,89	72,24	7,02	4,68	10,70
XII	1-C5H11	85	132-133	0,54	72.37	7.13	4,84	10,87	72,24	7,02	4,68	10,70

^{*} ТСХ в системе четырехклористый углерод - ацетон, 20:1.

(a)

ПМР спектры соединений IV-XII

Таблица 2

Таблица 1

(r)
$$(6)$$
 (8) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8) (9) (10)

Соеди-	a	6	В	г	д	e	ж	3
IV	2,75 c	4,70 c	7.10 c	7,8—8,0 M	3,80 т	-		
V	3,00 c	4,85 c	7,30 c	7,7-8,3 M	3,65 c	_	_	_
VI	2.80 c	4,71 c	7,20 c	7,7-8,2 M	1,20 т	_	_	3,50 KB
VII	2,78 c	4.57 c	6,95 c	7,68,0 M	1,25 т	_	1.60 M	3.76 T
VIII	3,13 c	4,87 c	7,00 c	7,4-8,0 M	1,20 д	4,65 м		_
IX	3,15 c	4,50 c	6.97 c	7,6-8,1 m	1,25 т		1,60 м	3,76 T
X	3,10 c	4,90 c	7,10 c	7,8-8.4 M	1,25 д	1.60 м	_	3,55 д
XI.	2,82 c	4,83 c	7,15 c	7,6-8,0 M	1,25 т	_	1.72 m	3,75 т
XII	3,12 с	4,65 c	7,00 c	7,5-7,8 м	1,22 д	1,59 м	1,81 кв	3,77 τ

- 1. Гюльбудагян Л. В., Ван Игок Хыонг, Дургарян В. Г., Квочко Т. В. Арм. хим. ж., 1976, т. 29, № 4, с. 365.
- 2. Гюльбудагян Л. В., Ван Нгок Хыонг, Дургарян В. Г. Арм. хим. ж., 1978. т. 31, № 4, с. 254.
- 3. Shanmugam P., Kanakarajan K., Soundararajan N. Synthesis. 1976. N. 9. p. 595.
- 4. Gnarasekaran A., Soundararajan N., Shanmugam P. Synthesis, 1977, M 9. p. 612.
- 5. Grundon M. F., James H. J. Tetrahedron Letters, 1971, N. 49, p. 4727.
- 6. Makisumi Y. Tetrahedron Letters, 1966, 3 51. p. 6399.
- 7. Алексанян И. Л., Гюльбудагян Л. В. Арм. хим. ж., 1980, т. 33, № 3, с. 258.

Армянский химический журнал, т. 42 № 7, стр. 473-477 (1989 г.)

УДК 541.64:542.944

НИЗКОТЕМПЕРАТУРНОЕ ГАЛОИДИРОВАНИЕ ПОЛИВИНИЛЕНЦИАНИДА В ДИМЕТИЛФОРМАМИДЕ

В. А. ПЕТРОСЯН, С. М. МИРЗАХАНЯН и Г. Г. МКРЯН ОНИЛКІІ МЛП АрмССР при ПКО им. Ст. Шаумяна, Ереван Поступило 3 VI 1987

Поливиниленцианид, получаемый дегидрохлорированием поли-αхлоракрилонитрила [1—2], является ценным объектом для получения модифицированных продуктов, содержащих различные функциональные группы.

Нами в отличие от опубликованного ранее исследования [2] проведено низкотемпературное (—10 ÷ — 5°) галоидирование поливиниленцианида в среде диметилформамида (ДМФА). Галоидирование в описанных условиях, аналогично галоидированию олефинов [3] и полимеров диенов [4—7], приводит к образованию продуктов, макромолекулы которых содержат, кроме дигалоидпроизводных, также звенья сопряженного присоединения галогена с участием ДМФА. Ниже приводится схема галоидирования поливиниленцианида в виде полимерного сегмента, состоящего из 100 элементарных звеньев.

Продукт I выделяется в нейтральном по отношению к иммониевым группам осадителе—абсолютном диэтиловом эфире. При нагревании продукта I, в отличие от аналогичных продуктов на основе диеновых полимеров [4], отщепление ДМФА сопровождается выделением галогенводородов с образованием эвеньев, содержащих ненасы-