IR SPECTRAL AND THERMOGRAPHIC INVESTIGATIONS OF THE PRODUCTS OF IRON INTERACTION WITH ALKALINE AND SILICATE-ALKALINE SOLUTIONS

Ts. R. STEPANIAN, N. O. ZULUMIAN. E. Kh. ANAKCHIAN, A. P. HOVHANNISSIAN and V. N. OVCHIAN

The products of a-Fe interaction with concentrated solutions of KOH containing various amounts of SiO₂ have been investigated.

It has been established that generally they are amorphous oxides and hydrosilicates with complex composition and structure.

ЛИТЕРАТУРА

- 1. Осчиян В. П. Восканян С. С. Арм. хим. ж., 1977, т. 30, № 5, с. 380.
- 2. Овчиян В. Н., Восканян С. С., Данильянц Э. С., Аванесова Л. М. Арм. хим. ж., 1978, т. 31, № 6, с. 393.
- 3. Беляев В. П., Парпуц И. В., Артемьев В. И., Сухотин А. М. Защита металлов, .1984, т. 20, № 6. с. 914.
- 4, Tsuru T., Haruyami S. Corros, Sci., 1976, v. 16, № 9, p. 623.
- 5. Loechel B., Strehblow H. Electrochim. Acta, 1983, v. 28, No 4, p. 565.
- Moenke H. Mineralspektren I. Akad-Verlag, Berlin, 1962; Moenke H. Mineralspektren II. Akad-Verlag, Berlin, 1936.
- 7. Пошкевич Л. А. Броневой В. А., Краус И. П. Термография продуктов глиноземного производства. М., Металлургия, 1983, с. 125.
- 8. Горшков В. С., Тимашев В. В. Методы физико-химитеского анализа вяжущих вещести. М., Высшая школа, 1963, с. 285.
- Лазарев А. И. Колебательные спектры и строение силикатов. Л., Наука, 1968, с. 347.
- 10. Овчиян В. Н., Барсегян М. Д., Егиизарян А. Г., Степанян Ц. Р. Изв. АН АрмССР. серия техи. паук, 1976. т. 29, № 6, с. 58.
- Тарасевич Ю. И., Овчаренко Ф. Д. Адсорбция на глинистых минералах. Киев, Наукова думка, 1975, с. 41.
- Sharma S. K., Dent Glasser L. S., Masson C, R. J. Chem. Soc. Dalton, 1973
 p. 1321
- 13. Dent Glasser L. S., Luchowski E. E., Comeron G. G. J. Appl. Chem. Biotechnol, 1977, v. 27, p. 59.

Армянский химический журнал, т. 41, № 5, стр. 259—262 (1988 г.)

УДК 541.11/1

ИССЛЕДОВАНИЕ РАСТВОРИМОСТИ В СИСТЕМАХ K₂SiO₃—K₂SO₄(KCl)—H₂O ПРИ 25°C

Г. О. ГРИГОРЯН, А. С. КАРАХАНЯН и О. Е. АРТЕМОВА Институт общей и неорганической химии АН Армянской ССР, Ереван Поступило 3 VII 1986

Изотермическим методом при 25° исследована растворимость в системах K_2SiO_3 — K_2SO_4 (KCl)— H_2O . Системы эвтонического типа. Определены области кристаллизации K_2SO_4 , KCl, K_2SiO_3 nH_2O . Показано, что на процесс кристаллизации силиката калыя оказывают влияние анионы калийных солей.

Рис. 1, табл. 2, библ. ссылок 6.

При получении силикатов щелочных металлов гидротермальным методом в качестве активатора используют сульфаты щелочных металлов [1, 2]. Данные по растворимости K₂SO₄, KCl в водных растворах силиката калия в литературе отсутствуют, однако для объяснения механизма гидротермального синтеза эти данные представляют определенный интерес.

Нами исследована растворимость в системах K_2SiO_3 — K_2SO_4 — (KCl)— H_2O при 25°. Для экспериментальной работы использовали хлорид и сульфат калия марки «ч. д. а.» и K_2SiO_3 , синтезированный из

едкого кали и кремневой кислоты.

Исследование проводили методом изотермической растворимости в воздушном термостате во фторопластовых «бомбах», закрепленных на вращающемся барабане. Температуру в воздушном термостате поддерживали с точностью ±0,1°. Насыщенные растворы выдерживали в большом их избытке с твердой фазой. Время установления равновесия определялось путем систематического аналитического контроля состава жидкой фазы. Равновесие в системе устанавливалось при непрерывном перемешивании смесей в течение 15 суток.

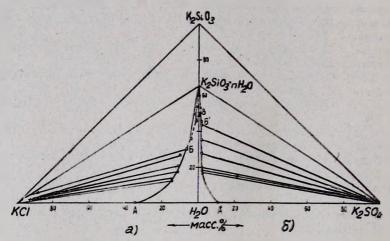


Рис. Изотермы растворимости систем при 2 °C а) $K_2SiO_3-KCI-H_2O$. 6) $K_2SiO_3-K_2SO_4-H_2O$.

В отобранных пробах жидких и твердых фаз определяли содержание хлор-иона —аргентометрическим титрованием, SiO_2 и SO_4^{2-} весовым методом [3].

Результаты исследования систем K_2SiO_3 — K_2SO_4 (KCl) — H_2O при 25° приведены в табл. 1, 2 и графически представлены на рисунке. Изотермы растворимости изученных систем состоят из ветвей кристаллизации KCl, K_2SO_4 и $K_2SiO_3 \cdot \Pi H_2O$, содержат три основные области кристаллизации (рис.):

A-B-KCI и $A'-B'-K_2SO_4-$ области кристаллизации KCI и K_2SO_4 , соответственно:

Б—В— $K_2SiO_3 \cdot nH_2O$ и Б'—В— $K_2SiO_3 \cdot nH_2O$ — предполагаемые области выделения $K_2SiO_3 \cdot nH_2O$ в твердую фазу;

А-Б-В-Б'-А'-Н₂О - область ненасыщенных растворов.

Вследствие затруднения выделения в твердую фазу K_2SiO_3 нам не удалось определить его область кристаллизации. Для построения этой области исходные растворы с донной фазой K_2SiO_3 центрифугировали ($\sim 500\div700$ об/мин), в результате чего образовывались два слоя, отвечающие фильтрату и «остатку», которые затем анализировали. Поэтому область выделения $K_2SiO_3 \cdot nH_2O$ ограничена на рисунке пунктиром. Аналогичная методика была применена в работах [4, 5].

Трудность выделения силиката калия из растворов в виде твердой фазы можно объяснить тем, что он при этих условиях находится в виде жидкости с большой вязкостью. Кроме того, следует отметить сильную гигроскопичность безводного силиката калия, который расплывается при соприкосновении с воздухом [6].

Таблица I Растворимость в системе $K_2SiO_3-K_2SO_4-H_2O$ при $25^{\circ}C$

Твердая фаза	Состав "остатка", масс. ⁹ / ₀		Состав жидкой фазы, масс. $^{0}/_{0}$	
	K ₂ SiO ₃	K₂SO₄	K₂SiO₃	K₂SO₄
K ₂ SO ₄	n = 1 1		_	10,11
то же	4,20	89,40	16,80	1,68
	3,60	90.60	17,50	1,46
	3,30	89,40	19,90	1,41
- / / -	5,00	83,70	27,40	1,38
F 3	4,97	86,50	34,90	1,63
1,1	5,10	91,40	43,80	1,48
KaSIOa · nHaO	52,80	0,15	45,30	0.25

Таблица 2 Растворимость в системе K₂SiO₃—KCl—H₂O при 25°C

Твердая фаза		Состав "	Состав жидкой фазы, масс. ⁰ / ₀	
	K ₂ SiO ₃	KC1	K ₂ SiO ₃	KC1
KC1	_			35,20
то же	2,83	86,90	12,10	14,70
	2.85	88.40	13,42	14,70
	2,60	89,00	20.20	11,80
	2,40	93,00	17,10	11,80
24 16 (21)	5,31	76,40	27,00	10,56
	6,00	88.80	29,80	7,45
K ₂ SiO ₃ ·nH ₂ O	49,75	2,87	35.50	4.21
то же	53,70	1.68	45,40	1,87

Добавление к насыщенному раствору сульфата калия K_2SiO_3 приводит к понижению растворимости K_2SO_4 (от 10,11 до 0,25 масс.%), в случае с KCl растворимость его уменьшается более значительно (от 35,2 до 1,87 масс.%), что связано, по-видимому, с влиянием анноноз. В системе $K_2SiO_3-K_2SO_4-H_2O$ силикат калия имеет меньшую ветвы кристаллизации, чем в системе $K_2SiO_3-KCl-H_2O$, на что также оказывают влияние анионы калийных солей.

K₂SiO₃—K₂SO₄ (KCl)—H₂O ՀԱՄԱԿԱՐԳԵՐՈՒՄ ԼՈՒՄԵԼԻՈՒԹՅԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ 25°-ՈՒՄ

Գ. Հ. ԳՐԻԳՈՐՅԱՆ, Ա. Ս. ԿԱՐԱԽԱՆՑԱՆ և Օ. Ե. ԱՐՏՅՈՄՈՎԱ

իզոթերմիկ լուծելիության մեթոդով 25°-ում ուսումնասիրված են K₂SiO₃—K₂SO₄ (KCl)—H₂O Համակարգերը։ Հաստատված է, որ այս երկու Համակարգերը էվտոնիկ տիպի են, որտեղ որոշված են K₂SO₄, KCl, K₂SiO₃. nH₂O բյուրեղացման մարզերը։ Ուսումնասիրությունները ցույց են տվել, որ կալցիումի սիլիկատի բյուրեղացման պրոցեսի վրա ազդեցություն են գործում կալիումական աղերի անիոնների կառուցվածջային առանձնահատկությունեները։

A STUDY OF SOLUBILITY IN K₂SiO₂—K₂SO₄ (KCl)—H₂O SYSTEMS AT 25°C

G. O. GRIGORIAN, A. S. KARAKHANIAN and O. E. ARTYOMOVA

A solubility in $K_2SiO_3-K_2SO_1$ (KCl)— H_2O system by isothermic method at 25°C has been studied. It has been found that the systems are of evtonic type, and the crystallization areas of K_2SO_1 , KCl, $K_2SiO_3 \cdot nH_2O$ have been determined. It has been shown that the structural peculiarities of the anions of potassium salts act on the process of crystallization of potassium silicate.

ЛИТЕРАТУРА

- 1. Монин В. Я. Сб. Проблемы экологии в производстве фосфора и фосфорсодержащих продуктов. Л., ЛенНИИГипрохим, 1981, с. 68.
- 2. Пат. 2157942 (1972), Франция/Orlando L., Bertorelli, Robert K. Meys. Lloyd E. Williams, Howard F. Zimmerman.
- 3. *Аринуштина Г. В.* Руководство по химическому анализу почв. М., Госуниверситет, 1961. с. 170. 293.
- Бибаян Г. Г., Саямян Э. А., Гюнашян Э. Б., Восканяни С. С. Арм. хим. ж., 1963, т. 16, № 3, с. 221.
- 5. Блидин В. П. ЖНХ, 1957, т. 2, с. 1151.
- 6. Манвелян М. Г., Бабаян Г. Г., Саямян Э. А., Восканян С. С. Арм. хим. ж., 1959, т. 12, № 2, с. 95.