Յույց է տրված, որ պինդ մակերեսը ավոլի էֆեկտիվ ազդեցություն է գործում էթանի ռադիացիոն օբսիդացման պրոցեսի վրա փոբր դողաների դեպւրում։

A 'STUDY OF SURFACE INFLUENCE ON RADIATION-CHEMICAL OXIDATION AND ETHANE DECOMPOSITION DEPENDING ON DOSE INTENSITY

D. M. ADILKHANIAN, A. H. MANTASHIAN and R. G. ARSHAKOUNI

The influence of dose intensity on heterogenous radiolysis of $C_2H_6-O_2$ mixture has been studied over a wide range of doses ($D = 0.5 - 120 \ kgr$). An absence of dose intensity influence on products output (G_1) for high doses has been established. In the presence of silikagel over $0.5-0.8 \ kgr$ range of doses and dose intensity J = 0.5; 1; 2 a considerable rise of G_1 has been detected. This effect is not observed in oxygen absence.

ЛИТЕРАТУРА

- 1. Гирибов А. А., Меликзаде М. М., Бакиров М. Я., Рамазанова М. Х. ХВЭ, 1982, т. 16, № 2, с. 130.
- 2. Крылови З. Д., Долин П. И. Кин. и кат., 1966, т. 7, № 6, с. 977.
- Кекельбергс Р., Крунк А., Френе А. Катализ. Новые физические методы исследования. М., Мир, 1964.
- 4. Joppien G. R., Willard J. E. . Phys. Chem., 1972, v, 76, № 22, p. 3158.
- 5. Адилханян Д. М., Манташян А. А. Арм. хим. ж., 1983, т. 36, № 8, с. 491.

Армянский химический журнал, т. 41, № 12, стр. 741—747 (1988 г.)

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 543.544.2+541.183

ВЛИЯНИЕ СТЕПЕНИ КАРБОНИЗАЦИИ НА ХРОМАТОГРАФИЧЕСКУЮ АКТИВНОСТЬ АМОРФНОГО ГИДРОМЕТАСИЛИКАТА КАЛЬЦИЯ

Г. Ш. ОВСЕПЯН и С. М. МОСИКЯН

Институт общей и неорганической химии АН Армянской ССР, Ереван

Поступило 10 IV 1987

Сравнительным хроматографическим исследованием карбонизированных форм аморфного гидрометасиликата кальция (содержание CaCO₃~34, 45 и 57 масс.%) показано, что наиболее эффективным адсорбентом для тонкослойной хроматографии является карбонизированный гидрометасиликат кальция, содержащий ~45 масс.% CaCO₃.

Рис. 3, табл. 1, библ. ссылок 8.

Карбенизация аморфного гидрометасиликата кальция дает возмежность получать карбонат-силикатные материалы, которые по своим адсорбционно-структурным характеристикам отвечают требованиям, предъявляемым к адсорбентам для тонкослойной хроматографин [1]. Показано, что структура и свойства этих материалов, а следовательно, и их хроматографическая активность, зависят от степени карбонизации исходного гидрометасиликата кальция, т. е. от содержания CaCO₃ [1—2].

Цель настоящей работы—установить оптимальный уровень карбонизации аморфного гидрометасиликата кальция, обеспечивающий получение карбонат-силикатного материала с наиболее высокими разделительными свойствами в режиме ТСХ.

Объекты исследования: исходный аморфный гидрометасиликат кальция—образец 1 (получен по способу [3]) и его карбонизированные формы, содержащие ~ 34, 45 и 57 масс.% СаСО₃—образцы 2—4, соответственно (условия принудительной карбонизации образца 1, обеспечивающие получение образцов 2—4, приведены в [1, 2]). Все образцы представляют собой тонкодисперсные порошки белого цвета зернением 5÷10 мкм (вне зависимости от степени карбонизации), но несколько отличаются структурными характеристиками и, что самое главное, резко различаются химией поверхности (табл. [2]).

Таблица

Образец	Содер- жание СаСо ₃ . масс. º/ ₀	Величина удельной поверх- ности, S, м²/г	Объем пор V _{ср} , сж ³ /г	Днаметр пор d _{cp} , Å	рН	R _f - 100 [4] для 3-ком- понентной системы Шталя	Структура и состояние поверхности
1	нсх.	180	0,98	200	10,5	нет раз- деления	кориускулярная СаSIO₃∙ пН₃О
2	34	220	0,90	180	8,5	нет раз- деления	корпускулярная CaSiO ₃ -nH ₂ O с частич- ным покрытием CaCO ₃
3	45	200	0,80	160	7,6	30, 70, 85	корпускулярная с пол- ным покрытием СаСО ₃
•	57	205	0,60	100	7,4	25, 67, 70	то же самое

Адсорбционно-структурные характеристики образцов 1-4

Примечание: методика определения всех показателей, кроме R_f · 100, приведена в [1-2].

Хроматографическую активность исследуемых образцов определяли по эффективности разделения эталонных смесей азо-красителей—3компонентной системы Шталя [4] и более сложной 6-компонентной системы фирмы «Мерк». Элюент—бензол. Хроматографические пластинки получали в строго стандартных условиях. Адсорбент в количестве 1 г без жаких-либо операций по измельчению, рассеву или введению связующего растирали в 7 мл дистиллированной воды до состояния однородной суспензии и «накатывали» на чистую и обезжиренную поверхность стеклянной пластинки. При размере пластинки 5×6 см и указанном объеме суспензии получали 5 хроматографических пластинок. Пластинки со слоем адсорбента высущивали при комнатной температуре до воздушно-сухого состояния (3—4 ч) и без проведения термической активации испытывали в хроматографическом режиме. Толщина слоя адсорбента на готовых пластинках составляла 1,2—1,4 мм.

Для сравнения в работе были использованы силикатель КСК (подготовка для ТСХ—дробление, измельчение и многократная седиментация, по [4]) и готовые пластинки Силуфол-254 (производство ЧССР). Хроматографические пластинки с этими адсорбентами, согласно требованиям [4, 5], активировали при 1.10° в течение 1 ч. Регистрацию полученных хроматограмм проводили в основном способом контактной фотосъемки.

На рис. 1а приведены хроматограммы разделения 3-компонентной системы Шталя (номера хроматограмм соответствуют обозначениям образцов в табл.). Как видно, на исходном гидрометасиликате кальция система не разделяется. На образце 2 также нет разделения, хотя и наблюдается некоторое выделение компонентов в общей размытой хроматограмме: примерные значения $R_f \cdot 100$ для этого образца составляют 9—33, 40—75 и 75—95. Полное и четкое разделение смеси на составляющие компоненты (в последовательности: индофенол, судан красный, масляный желтый) происходит на образце 3; форма пятен сферическая и компактная, значения $R_f \cdot 100$ —30, 75 и 85. Примерно такое же разделение, но с нескольжо худшим соотношением $R_f \cdot 100$. (25, 67 и 70), отмечается на образце 4. Таким образом, наиболее качественное разделение эталонной смеси происходит на образце 3, в котором содержание карбоната кальция достигает ~45 масс.%.

Структурные характеристики образцов 1-4, несмотря на некоторое различие, примерно одинаковые, во всяком случае, у образцов 1-3 (табл.). Поэтому наблюдаемое различие в их разделительной способности можно отнести, прежде всего, к различной химии поверхности. Образец 1-аморфный гидрометасиликат кальция-можно отнести к адсорбентам II типа по классификации А. В. Киселева [6], т. е. к сильноспецифическим адсорбентам, поскольку на его поверхности сосредоточены положительные заряды-слабокислотные центры (в виде частично протонизированных ОН-групп, связанных с атомом. кремния) и Ca²⁺-катионы (положительный заряд выдвинут наружу и сосредоточен в частице малого радиуса, а отрицательный распределен по внутренним связям большого комплексного аниона). В энергетическом отношении эти центры адсорбции неравнозначны (Са²⁺-катионы характеризуются более сильным межмолекулярным взаимодействнем в системе адсорбат-адсорбент, чем поверхностные ОН-группы, которые образуют лишь водородные связи различной прочности), и поэтому неоднородность химии поверхности приводит к сильному размыванию разделяемой смеси, на адсорбенте (хроматограмма 1).

Поверхность образца 2 частично покрыта карбонатом кальция—в виде наслоения на поверхности корпускул силикатной составляющей [2]. Для CaCO₃, имеющего несколько искаженную плотнейшую кубическую упаковку структурных единиц, характерно экранирование Ca²⁺катнонов выдвинутыми атомами кислорода [7]. Поэтому такая поверхность менее специфична и активна по сравнению с чистым CaSiO₃. nH₂O (рН водной вытяжки изменяется от 10,5—образец 1, до 8,5—образец 2), и на ней уже происходит некоторое разделение энализируемой смеси азо-красителей (ср. хроматограммы 1.2).

Поверхность сбразца 3 вся покрыта плотным слоем карбоната кальция толщиной 20÷200 Å [2], поэтому, в отличие от образца 2, она однородна (рН водной вытяжки составляет 7.6, для чистого CaCO₃— 7,3). По этой причине на образце 3 происходит четкое и компактное разделение эталонной смеси. Пои увеличении содержания CaCO₃ в силикатном материале до~57 масс. %—образец 4—изменяются лишь структурные характеристики (табл.). Химия поверхности остается иеизмененной, такой жс, как в образце 3. Дополнительное количество CaCO₃ (~12 масс. %). образующегося в результате более глубокой карбонизации, осаждаясь на поверхности корпускул, уже покрытых слоем карбоната кальция (состояние образца 3). увеличивает толщину этого слоя и тем самым приводит к заметному уменьшению объема и диаметра пор. Это. по-видимому, влияя на диффузионные процессы в слое образца 4, несколько замедляет разделение и ухудшает соотношение показателей R₁-100.

Таким образом, для получения эффективною адсорбента для ТСХ необходимо проводить карбонизацию аморфного гидрометасиликата кальция до ~45 масс.% содержания CaCO₃ (~70% степень карбонизации). Получаемый при этом карбонат-силикатный материал по состоянию поверхности [2] можно отнести, по-видимому, к чистому CaCO₃, впервые использованному в колоночной хроматографии М. Цветом [8]. Однако в отличие от CaCO₃ образец 3 (или KMK-20—карбонизированный гидрометасиликат кальция, содержит ~20 масс.% CO₂, что эквивалентно ~45 масс.% CaCO₃) имеет высокие адсорбционноемкостные показатели, что изначально предопределяют структурные характеристики матрицы—CaSiO₃·nH₂O (табл.). Для чистого карбоната кальция $S \approx 2-10 \ M^2/2$ и объем при ~0,1-0,2 $c \ M^3/2$, в зависимости от тщательности измельчения. Поэтому KMK-20 можно использовать в качестве адсорбента и в TCX.

Как видно из рис. 16, где приведены хроматограммы разделения эталонной смеси азо-красителей фирмы «Мерк» на силикагеле КСК, Силуфол-254 и КМК-20, полученный карбонат-силикатный адсорбент не только не уступает известным в ТСХ адсорбентам, но значительно превосходит Силуфол-254 (ср. хроматограммы 1, 3). Разделение смеси на КМК-20 и силикагеле КСК примерно одинаковое (хроматограммы 1, 2), но для КМК-20 отмечается лучшее соотношение показателей R_г-·100 (0, 10, 45, 65, 73, 80—КМК-20 и 0, 7, 20, 43, 50, 60—КСК).

В качестве примеров практического использования разработанного сорбента на рис. 2 и 3 приведены типичные хроматопраммы разделения различных органических систем на КМК-20, силикагеле КСК и Силуфоле UV-254. Как видно, КМК-20 проявляет более высокую чувствительность в данных системах к геометрии разделяемых молекул, наличию тех или иных функциональных групп и связей в молекулах (специфическое взаимодействие с кальций-катионом в структуре CaCO₃), что дает возможность выявлять и наличие примесных компонентов.

Рис. 1. а. Хроматограмыы разделения 3 компонентн й системы Шталя на исходном (1) и карбонизи рованных образцах аморфного гидрометасиликата кадыния, содержащи (: ~34 (2), 45 (3) и 557 (4) масс. % СаСоз. Элемент-бензол. 6. Хроматограммы разделения 6-компонентной эталонной системы азо-краситеней фирмы "Мерк" на КМК-20 (1), силикагеле КСК (2) и Салуфо (2-254 (3). Элюент-бензол.

Рис. 2. а. Хроматограммы разделения продуктов феноксилирования фосфонитрилов, предстазляющих собой трудноразделяемую смесь пентафеноксихлор- и гексафеноксиник ютрифос јазенов на КМК-20 (! ! с) – ликагеле КСК (2). Элюент – бензол : гексан, 1 : 1, проявка в парах нода. 6. Хроматограммы разделения модел ной смеси аминокислот (лизин, глицин, пролин, тирозин, триптофан) на КМК-20 (1), силикагеле КСК (2) и Силуфоле-254 (3). Элюент – пропанол : аммнак, 7 : 3. Проявка раствором, содержащим 0,3 г инигидрана, 100 мл бутанола и 3 мл уксусной кислоты.

Рис. 3, а. Хроматогјаммы разделения теукринов H1--H4 на КМК-20 (1) и силикагеле КСК (2). Элюент-хлороформ: метанол, 19:1. 5. Хроматограммы разделения смеси гликозидов-липарин и пектолинарии (1) и определения чистоты липарина (2) на КМК-20 и Силуфоле UV-254. Элюент-этилацетаг: метанол: хдороформ: вода, 7:2:1:1. Проявка УФоблученчем.

745

Разработанный сорбент имеет и ряд других технико-экономических преимуществ: 1-он значительно дешевле по сравнению с известными адсорбентами для ТСХ, т. к. гидрометасиликат кальция получают на основе продуктов комплексной переработки природного минерального сырья и, кроме того, технология получения непосредственно КМК-20 не требует проведения целого ряда энерго- и трудоемких процессов по дроблению, измельчению и фракционированию; 2-кальцит, входящий в состав сорбента, обладает четко выраженными люминесцентными свойствами [7], поэтому отпадает необходимость их введения; 3-гидрофобные свойства поверхности (карбонатный слой) исключают необходимость проведения термической активации хроматографической пластинки; 4-высокая дисперсность порошкообразной системы, а также выраженная адгезия к поверхности стеклянной пластинки позволяют получать хроматографические пластинки без введения связующего. Есть и ограничивающие условия использования КМК-20 в ТСХ. Относятся они к элюнрующим системам. В состав последних возможно введение кислого реагента и воды в количествах не более 5-4 масс. % от общего объема элюента (разложение СаСО3 кислым реагентом и разрушение слоя адсорбента водой в случае отсутствия связующего).

ԿԱՐԲՈՆԻՉԱՑՄԱՆ ԱՍՏԻՃԱՆԻ ԱՉԴԵՑՈՒԹՅՈՒՆԸ ԱՄՈՐՖ ԿԱԼՑԻՈՒՄԻ ՀԻԴՐՈՄԵՏԱՍԻԼԻԿԱՏԻ ՔՐՈՄԱՏՈԳՐԱՖԻԱԿԱՆ ԱԿՏԻՎՈՒԹՅԱՆ ՎՐԱ

Գ. Շ. ՀՈՎՍԵՓՑԱՆ Ն Ս. Մ. ՄՈՍԻԿՑԱՆ

Ամորֆ կալցիումի հիդրոմնտասիլիկատի կարբոնիզացված ձևերի քրոմատոդրաֆիական համեմատական ուսումնասիրությունը (CaCO₃-ի պարունակությունը ~ 34, 45, 57 մասս.%) ցույց տվեց, որ ամենաարդյունավետ ադսորբենտը նրբաշերտ քրոմատոդրաֆիայի համար ~ 45 մասս.% CaCO₃-ի պարունակությամբ կարբոնիղացված կալցիումի հիդրոմնտասիլիկատն է։

THE INFLUENCE OF CARBONIZATION DEGREE ON CHROMATOGRAPHIC ACTIVITY OF AMORPHOUS CALCIUM HYDROMETASILICATE

G. Sh. HOVSEPIAN and S. M. MOSSIKIAN

The comparative chromatographic study of carbonated samples of amorphous calcium hydrometasilicates containing ~ 34 , 45, 57 mass $^{0}/_{0}$ CaCO₃ has showed that the sample containing ~ 45 mass $^{0}/_{0}$ CaCO₃ is the most effective adsorbent for thin-layer chromatography.

ЛИТЕРАТУРА

- 1. Авт. свид. № 1159884 СССР/Оганесян Э. Б., Оганесян К. Б., Овсспян Г. Ш., Габриелян Ж. В., Бакунц В. В. — Бюлл. изобр. 1985, № 21.
- 2. Овсепян Г. Ш., Оганесян К. Б., Габриелян Ж. В., Оганесян Э. Б. Арм. хим. ж., 1988, т. 41, № 9, с. 535.
- 3. Оганесян Э. Б., Овсепян Г. Ш., Оганесян К. Б., Габриелян Ж. В., Мосикян С. М. Арм. хим. ж., 1987, т. 40, № 1, с. 15.

- 4. Оглоблина И. П., Мокеев В. Я., Сакодынский К. И., Баранник И. Д. Сб. «Адсорбенты, их получение, свойства и применение». М., Наука, 1978, с. 159.
- 5 Перри С., Амос Р., Брюер П. Практическое руководство по жидкостной хроматографии, М., Мир., 1974, 260 с.
- 6. Киселев А. В., Яшин Я. И. Газо-адсорбинонная хроматография. М., Наука, 1967, с. 18.
- 7. Бетехтин А. Г. Курс минералогии. М., Геологиздат, 1961, с. 286.

8. Цвет М. - Хроматографический адсорбционный анализ. М., АН СССР, 1945, 273 с.

Армянский химический журнал, т. 41. № 12, стр. 747—751 (1988 г.)

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.395+547.315.1+541.124

РЕАКЦИИ НЕПРЕДЕЛЬНЫХ СОЕДИНЕНИИ

СХLVI. РЕГИОХИМИЯ ПРИСОЕДИНЕНИЯ МЕТИЛОВОГО ЭФИРА ТРИХЛОРУКСУСНОЙ КИСЛОТЫ К ЕНИНАМ.

А. Н. СТЕПАНЯН, Г. Б. ОГАНЯН к Ш. О. БАДАНЯН

Институт органической химии АН Армянской ССР, Ереван

Поступило 27 VIII 1987

Исследована региохимия присоединения метилового эфира трихлоруксусной кислоты к ениновым карбинолам и диенинам. Показано, что в апротонных растворителях реакция протекает региоспецифично, приводя к продуктам 1,4-присоединения эфирам 2,2,6-трихлор-4,5-диеновых кислот.

В случае диенинов при реакции в метаноле наряду с продуктами 1,4-присоединения образуются также ацетиленовые эфиры, являющиеся результатом 1,2-присоединения.

Библ. ссылок 1.

Ранее нами было показано, что присоединение эфиров трихлоруксусной кислоты к винил- и изопропенилацетиленам как в протонных, так и в апротонных растворителях в присутствии ионов одновалентной меди протекает региоспецифично, приводя к продуктам 1,4-присоединения—эфирам 2,2,6-трихлор-4,5-диеновых кислот [1]. С целью выявления влияния заместителя у тройной связи в енинах на региохимию присоединения в реакцию вовлечены диметилвинилэтинил-, диметилизопропенилэтинилкарбинолы (Ia, б) и винил-, аллилизопропенилацетилены (Va, б). Установлено, что присоединение метилового эфира трихлоруксусной кислоты к карбинолам I в присутствии ионов одновалентной меди в ацетонитриле и метаноле приводит к смеси продуктов II, III и IV с преобладанием II.

V'OH COOCH2 COOCH COOCH: Ĩa,δ ī a F a) R=H; 5)R=CH3

747