ՀԻԴԱՆՏՈՒՆՆԵՐԻ ՆՈՐ ԱԾԱՆՑՅԱԼՆԵՐԻ ՍՏԱՑՈՒՄ

4. 4. ANALUPSUL, L. L. ASNALPARAUQSUL & E. D. ZUTAUPENAUSUL

Ֆրանամինա-սիմ-տրիազինների կալիումական աղերի և մոնոքլորքասախաββվի, α-քլորպրոպիոնաββվի էսβերների կոնդենսացմամբ ստացված են N-կաթթմեβօքսիմեβիլ(էβիլ)-N-ցիանամինա-4,6-տեղակալված-¤իմ-տրիաղիններ, որոնց սպիրտա-հիմնային հիդրոլիզը բերում է հիդանտոինների ածանցյալների։ Իրականացված է վերջինների ալկիլացումը։

SYNTHESIS OF THE NEW DERIVATIVES OF HYDANTOINS

· V. V. DOVLATIAN, L. L. GYULBUDAGHIAN and E. N. HAMBARTSUMIAN

N-Carboxymethyl(ethyl)-N-cyanamino-4,6-substituted-5-triazines have been synthesized by condensation of potassium salts of cyanamino-S-triazines with esters of monochloracetic and a-chloropropyonic acids. Their alcoholic alkaline hydrolisis [lead to hydantoin derivatives. Alkylation of the latters have been carried out.

ЛИТЕРАТУРА

- 1. Johnson Z. J. Am. Chem. Soc., 1914, vol. 36, p. 355.
- 2. Эльдерфильд Р. Гетеропиклические соединения. М., ИЛ, 1961, с. 204.
- 3. Авт. свид. 743996 (1979), СССР /Довлатян В. В., Амбарцумян Э. Н., Гюльбудаган: Л. Л., Авакян А. Г. Бюлл. нзобр. 1980, № 24.

[™] Армянский химический журнал, т. 40, № 111, стр. 719—723 (1987 г.)

УЛК 541.127+678.744.422

НИЗКОТЕМПЕРАТУРНАЯ ПОЛИМЕРИЗАЦИЯ ВИНИЛАЦЕТАТА В ВОДНОЙ СРЕДЕ

Р. П. МХИТАРЯН, Т. Т. ГУКАСЯН, М. Л. ЕРИЦЯН **ж** Н. М. БЕЙЛЕРЯН

Ереванский государственный университет Поступило 19 V 1986

Исследована радыкальная низкотемпературная полимеризация винилацетата в водной среде, иницинруемая каталитической системой персульфат калия—диметилэтаноламин. Показано, что в выбранных условиях полученный поливинилацетат отличается высокой молекулярной массой с низким числом ветвления по ацетатным группам.

Рис. 3, табл. 1, библ. ссылок 6.

Эксплуатационные, термические, химические и другие важные характеристики поливинилацетатных пластиков и композиций на их основе непосредственно связаны со структурой, молекулярной массой (ММ) и ММР исходного винилацетатного гомо- или сополимера [1, 2].

В связи с этим проблема регулирования ММ и ММР поливинилацетата и полимеров, полученных на его основе (в частности ПВС), является

задачей первоочередной важности.

В настоящей работе поставлена задача синтезировать высокомолекулярный поливинилацетат со сравнительно низкой степенью разветвленности с целью дальнейшего получения на его основе высокомолекулярного поливинилового спирта (ПВС), имеющего большое прикладное значение.

Экспериментальная часть и обсуждение результатов

Молекулярную массу ПВА и ММР определяли методами гель-проникающей хроматографии (ГПХ) и вискозиметрии. Использован гельхроматограф модели 200 фирмы «Whoters Associates» (США), со стирогелевыми колонками, пористостью 3·103, 3·104, 3·105 А.

Растворителем служил тетрагидрофуран. Скорость подачи элюен-

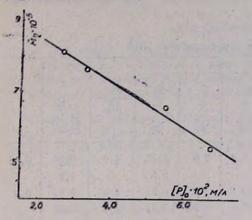
та 1,1 жл/мин, рабочая температура 25°.

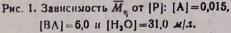
ВА очищали согласно [3], по 1,3958, Т. кип: 73,0°. Персульфат калия (Р) перекристаллизован из водного раствора. Использовали диметилэтаноламин (A) марки «х. ч.». Стабилизатором (эмульгатором) суспензии служил алкилсульфонат натрия среднего C15H31SO3Na (E-30).

Число ответвлений (ф) определяли с помощью уравнения:

$$\varphi = \frac{\overline{P_1}}{\overline{P_2}} - 1$$

 $\overline{P_1}$ — степень полимеризации исходного ПВА, $\overline{P_2}$ — степень полимеризации продукта реацетилирования ПВС, полученного при омылении исходного ПВА.


Поливинилацетат получен введением мономера в зону реакции порциями по ходу процесса полимеризации. Полимеризацию проводили при 20° в течение 2 ч. Выход полимера 90-95%.


В ранних работах [4] одним из нас совместно с Чалтыкяном для радикальной полимеризации виниловых мономеров в качестве инициаторов были предложены системы персульфат-амины. Ранее нами было показано [5], что системы персульфат калия—диметиламиноспирты общей формулы (CH₃)₂N(CH₂) OH (где $n=2\div 5$) являются эффективными инициаторами для радикальной полимеризации ВА.

Каталитическая система персульфат калия-диметилэтаноламин оказалась активной инициирующей системой радикальной полимеризации ВА при 20°. Проводя радикальную полимеризацию ВА при указанной температуре в водной среде в присутствии небольшого количества стабилизатора суспензии (до 0,5% от массы мономера), удалось получить ПВА с высокой ММ и низким числом ответвления по ацетатным группам.

На рис. 1 представлена зависимость средневязкостной ММ (\overline{M}_{τ_i}) ПВА от концентрации инициатора. Из данной зависимости вытекает, что обрыв растущих центров в основном линейный. Влияние молярного

соотношения [BA]/[H₂O] на ММ образовавшихся полимеров иллюстрируется на рис.2.

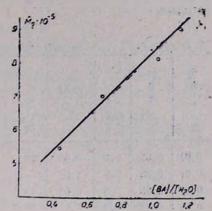


Рис. 2. Зависимость \overline{M}_{η} от [BA]/[H₂O]; [P] = $5 \cdot 10^{-8}$, [A] = 0,02 м/л. [E-30] = = 0,3% от [BA].

Как видно из рис. 2, с повышением содержания воды в реакционной системе уменьшается ММ полимера, что, по-видимому, связано с изменением конформаций растущих макроцепей в результате изменения гидрофобно-гидрофильного баланса среды.

Таким образом, в реакционной зоне полимеризации, регулируя со-

отношение [BA]/[H₂O], можно получить ПВА с различной молекулярной массой.

Из хроматограммы ПВА с использованием уравнения $M = D_1 e^{-D_1 V_1}$ [6] (где D_1 и D_2 — коэффициенты калибровочной зависимости, V_e — элюентный объем) определены ММ отдельных фракций полимера, с помощью которых определены ММР образцов полимеров.

ММР ПВА (дифференциальная и интегральная кривые) приводятся на рис. 3.

Мономодальность дифференциальной кривой (рис. 3, кр. 1) с резко выраженным максимумом го-

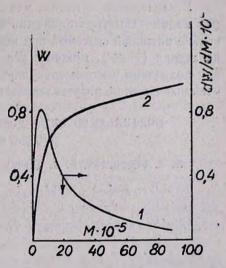


Рис. 3. Кривые ММР ПВА при 20°.

ворит в пользу неизменности природы активного растущего центра, механизма роста и обрыва цепей, а также отсутствия инверсии фаз до глубоких степени превдращения мономера в полимер.

С использованием хроматограммы ПВА рассчитаны молекулярные массы \overline{M}_z , \overline{M}_w и \overline{M}_n , соответственно (табл.).

Из синтезированного ПВА омылением получили ПВС, который отличается однородностью, высокой ММ и линейностью.

Условия проведения процесса полимеризации ВА и некоторые характеристики ПВА и продукта его омыления (ПВС) приводятся в таблице.

Таблица

Условия	синтеза	H	характеристики	ПВА	

	3 4	ġ			П	BA				
[P], MOAB A	II. Moneja	Е-30 % от м	[BA]	Mz. 10-5	Mw* 10-5	Mn. 10-5	Mr. 10-5	\overline{M}_{w}	ПВС М ₁ • · 10 ⁻⁵	φ
0,01	0,03	0,3	0,66	28	9,6	2,0	5,35	4,8	2,37	0,15
0,01	0.03	0.5	1,0	-	_		5,5	- 3	1,9	_
0,01	0,03	0,5	0,66	40,0	15,0	3.2	6,61	4,6	2,81	0,2
0,01	0,02	0,2	1,0	38,0	17,0	4,24	7,21	4,0	1,21	_
0,01	0,04	0,3	0,43	_	_	10-1	5,35	_	1,9	-
0,01	0,03	0,3	0,43	*	_	_	6,03	-	1,44	_
0,005	0,02	0,3	0,43	_	_	_	5,49	_	1,7	_
0,005	0,02	0,3	0,66	33	14.4	3,6	7,58	4,0	3,42	0,13
0,005	0,02	0,3	1,0	37	15,2	3.8	8,13	4,0	3,89	0,07

На основании данных таблицы можно заключить, что ММ ПВА и ПВС на его основе, полидисперсность и число ветвлений зависят от соотношения в реакционной массе [ВА]/[Н₂О].

В заключение отметим, что предложенную нами систему персульфат калия—диметилэтаноламин и стабилизатор Е-30, являющуюся довольно активной системой при полимеризации ВА при пониженных температурах (~20°), можно с успехом использовать в промышленности, для получения высокомолекулярного ПВА и ПВС на его основе, отличающихся малой разветвленностью.

ՎԻՆԻԼԱՑԵՏԱՏԻ ՑԱԾՐ ՋԵՐԱՍՏԻՃԱՆԱՅԻՆ ՊՈԼԻՄԵՐՈՒՄԸ ՋՐԱՅԻՆ ՄԻՋԱՎԱՅՐՈՒՄ

Ռ. Պ. ՄԽԻԲԱՐՅԱՆ, Բ. Տ. ՂՈՒԿԱՍՅԱՆ, Մ. Լ. ԵՐԻՑՅԱՆ L Ն. Մ. ԲԵՑԼԵՐՅԱՆ

լային ղանգվածով, ըստ ացետատային խմբերի ճյուղավորման փոքր թվով։

Ային արենասիրված է վինիլացետատի ցածրջերմաստիճանային ռադիկալագիմեթիլէթանոլամին հարուցող համակարգով։ Ցույց է տրված, որ ընտրած
պայմաններում ստացված պոլիվինիլացետատը տարբերվում է բարձր մոլեկու-

LOW-TEMPERATURE POLYMERIZATION OF VINYL ACETATE IN AQUEOUS MEDIUM

R. P. MKHITARIAN, T. T. GHUKASSIAN, M. L. YERITSIAN and N. M. BEYLERIAN

Low-temperature radical polymerization of vinyl acetate in aqueous medium initiated by potassium persulfate-dimethyl-ethanolamine system

has been investigated. Polyvinylacetate thus obtained shows high molecular weight and minor amount of acetate groups.

ЛИТЕРАТУРА

- 1. Авт. свид. 654626 (1979), СССР/Сорокии А. Я., Кузнецова В. А., Сироткина В. И., Никитина С. Г. — Бюлл. изобр. № 12 (1979).
- 2. Сорокин А. Я., Кузнецова В. А., Никитина С. Г. Пластиассы, 1974, № 5, с. 63.
- 3. Николаев А. Ф., Белгородская К. В., Дервакина Н. И.— ВМС, 1962, т. VI Б, № 1µ. с. 844.
- 4. Чалтыкян О. А., Бейлерян Н. М. Изв. АН АрмССР, 1961, т. 14, с. 203.
- 5. Гукасян Т. Т., Мхитарян Р. П., Бейлерян Н. М. Уч. зап. ЕГУ, 1977, № 3, с. 69.
- 6. Кузаев А. И., Колесникова С. Д., Брикенштейн А. А. ВМС, 1975, т. 17А, № 6, с. 1327.

Армянский химический журнал, т. 40, № 11, стр. 723—729 (1987 г.)

УДК 678-473

ВЛИЯНИЕ СТЕПЕНИ КОНВЕРСИИ ХЛОРОПРЕНОВОГО КАУЧУКА НА СВОЙСТВА КЛЕЕВ

С. А. КРОЯН, О. А. КОСЯН, С. Ц. ПАПИКЯН, Г. В. МОВСИСЯН, Л. И. БАЛАЯН, Н. С. БОШНЯКОВ и В. П. ФОКИН

Научно-производственное объединение НПО «Полимерклей», Кировакав Поступило 22 IV 1986

Изучена зависимость физико-механических свойств и жизнеспособности клеевых композиций на основе хлоропренового каучука (ХК) НТ от степени конверсии и времени его пластикации.

Наилучшие показатели имеют клеевые композиции на основе XK со степенью конверсии 90%, индексом полидисперсности, равным 2,3, и оптимальным временем пластикации $40\pm\Delta t$ мин. Дальнейшее увеличение степени конверсии и времени пластикации приводит к сужению ММР, увеличению молекулярно-массовых и ухудшению прочмостных характеристик клеевых соединений.

Рис. 4, табл. 1, библ. ссылок 7.

Быстрыми темпами расширяются области применения хлоропреновых каучуков (ХК) в различных отраслях народного хозяйства благодаря комплексу ценных свойств: относительной огнестойкости, высокой прочности и стойкости к различным видам старения, а также воздействию агрессивных сред. Эти и ряд других свойств сделали ХК незаменимыми и в клеевых композициях.

Однако наряду с гаммой положительных свойств хлоропреновые каучуки имеют большой недостаток—нестабильность при переработке и хранении. Это часто приводит к невоспроизводимости адгезионных, технологических и других свойств клеев.

Очевидно, что свойства каучуков и композиций на их основе можно стабилизировать и улучшить оптимизацией технологических режимов переработки полимера, молекулярной массы (ММ), молекулярно-массового распределения (ММР), распределения по типу функциональности (РТФ) и др.