8. Соколов С. Н., Силин И. Н. — Нахождение минимумов функционалов невязок методом линеаризации. Преприит ОИЯИ, Д-810, Дубна, 1961.

9. Yamada Kazutoshi, Kohmoto Shigeo, Yamazaki Michio, Liad Hitorada - J. Fac-

Eng. Chiba Univ., 1974, vol. 26, Na 49, p. 125.

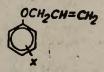
10. Розина К. А., Шендерович М. Д., Никифорович Г. В., Шерман С. А., Галактионов С. Г. — Сб. «Исследование плазмохимических процессов и плазменных устройств». ИТМО АН БССР, Минск, 1975, с. 118.

11. Mirskaya K. V.-Tetrah., 1973, vol. 29, Nº 5, p. 679.

Армянский химический журнал, т. 39, № 9, стр. 544—553 (1986 г.)

УДК 543.422.4+543.424.

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ МОНОЗАМЕЩЕННЫХ АЛЛИЛФЕНИЛОВЫХ ЭФИРОВ


Т. С. КУРТИКЯН, Г. А. ПЕТРОСЯН, А. С. АЗИЗЯН и Э. С. АГАВЕЛЯН Армянский филиал ВНИИ «ИРЕА», Ереван Поступило 30 IV 1985

Измерены спектры инфракрасного поглощения и комбинационного рассеяния света аллилфенилового эфира и ряда его монозамещенных производных. Проведено отнесение спектральных полос к нормальным колебаниям молекул. Обнаружен новый спектральный критерий выявления изомерной ,формы дизамещенных бензолов.

Рис. 3, табл. 4, библ. ссылок 14.

В литературе отсутствуют работы, посвященные полному анализу колебательного спектра аллилфенилового эфира и его монозамещенных производных. Для некоторых арилэфиров обсуждалось влияние положения заместителя на частоту антисимметричных валентных колебаний эфирных связей и был обнаружен [1] некоторый ее рост для мета-замещенных изомеров. Поскольку аллиловые эфиры фенолов находят широкое применение в качестве различного рода пестицидов [2, 3], а также являются удобными исходными соединениями для синтеза разнообразных органических реактивов [4, 5], представлялось интересным детальное рассмотрение их колебательных спектров, полезное как в аналитических целях, так и в возможности обнаружения новых спектральных признаков идентификации изомерных форм.

Исследованные соединения являются бесцветными жидкостями

X = H, 2-Cl, 3-Cl, 4-Cl, 2-Br, 3-Br, 4-Br, 2-CH₃, 3-CH₃, 4-CH₃, 2-OCH₃, 3-OCH₃, 4-OCH₃

с содержанием основного вещества, определенном хроматографически, не менее 98%. ИК спектры измерялись на спектрофотометре UR-20 в виде раздавленной капли между пластинами из КВг. Коэффициенты экстинкции определялись из спектров, полученных в растворе ССІ в

стандартных кюветах толщиной 0,007 см. В пучке сравнения помещался растворитель. Коэффициенты экстинкции полос, попадающих в область интенсивного поглощения растворителя, оценивались исходя из соотношений интенсивностей полос в спектрах раздавленной капли. Спектры комбинационного рассеяния (КР) возбуждались гелий-неоновым лазером ($\lambda = 6328 \, \text{Å}$) и снимались на спектрометре ДФС-24 с фото-электрической регистрацией спектра.

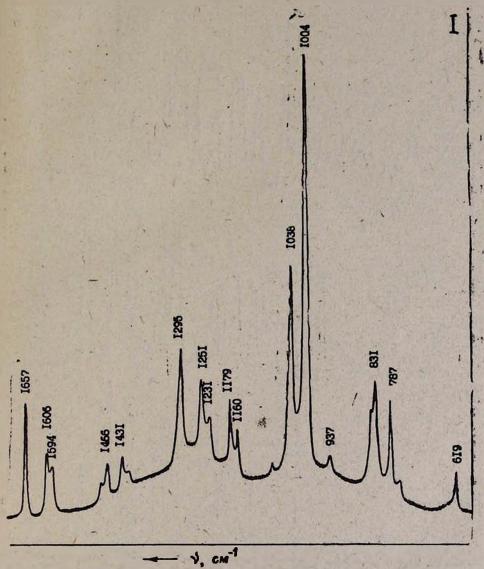


Рис. 1. КР спектр алаилфенилового эфира; 1 — интенсивность рассеянного излучения...

Анализ колебательного спектра аллилфенилового эфира показал, что полосы поглощения, ответственные за колабания фенильного фрагмента могут быть непротиворечивым образом интерпретированы на основании сопоставления со спектром простейшего монозамещенного бензола—толуола, спектр которого детально исследован [6, 7]. Плоские ко-

лебания бензольного фрагмента при этом с точностью до нескольких cm^{-1} совпадают с соответствующими полосами толуола. Наибольшие отклоненния от спектра толуола наблюдаются в области неплоских колебаний, лежащих в диапазоне $400-800\ cm^{-1}$, однако и в этом случае преемственность спектров в смысле числа и относительной интенсивности полос заметна.

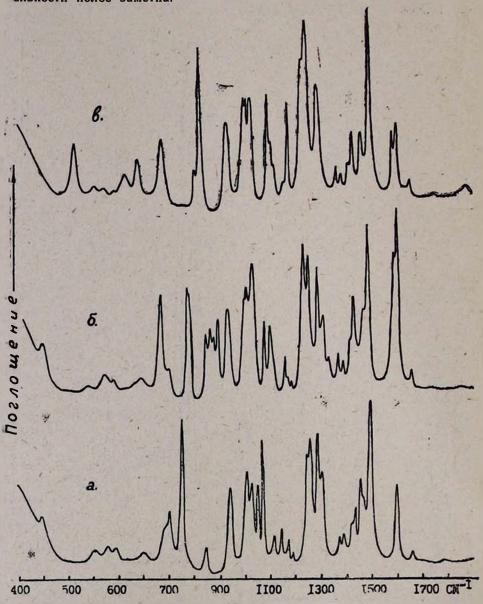


Рис. 2. ИК спектры хлорзамещенных аллилфениловых эфиров в орто- (a), мета- (б) и пара- (в) положениях.

Интерпретация полос, связанных с колебаниями фрагмента СОСН₂СН = СН₂, не встречает значительных трудностей. Колебания его слабо связаны с колебаниями остальной части молекулы и в преИнтерпретация колебательного спектра аллилфеннлового эфира $OCH_2CH = CH_2$

	1			
2	Ċ			
			1	۱
			H	ı
		7	,	ı
	7		2	8

ИК спектр, см ⁻¹	жоль ⁻¹ · л · см ⁻¹	КР	Форма колебания
		423	ү (С=С-С) аляильной группы
515	41	595	ү (ССС) кольца
575	24	575 619	β (CCH) двойной связи
650	14		
690	184		ρ (СН), ҡ (СС) неплоское деформационное колебание монозамещенного бензольного-
757	260		кольца ж (СС), р (СН)
785	360 30	787	β (ССН), Q (СС) плоское деформационное
2 10 10			колебание угла ССН кольца, смещанное-
920	41	831	с валентным колебанием С=С связи р (Сt) кольца
838 850 пл.	41	00.	P (CII) NORBIG
890	32	937	р (СН) кольца
933	141	931	р (= CH ₂) неплоские деформационные ко- лебания концевой двойной связи
995 пл.	66	*	$\gamma (CCH)^{\bullet}, \gamma (=CH_{\bullet})$
1001	99 71	1004	ү (ССС) кольца
1012 IIA. 1030	75		Q (СС) кольца
1042	177	1038	Оз (С-О-С) симметричное валентное ко-
1088	45		лебание эфирной группы в (ССН), Q (СС) кольца
1160	41	1160	β (CCH) кольца, β (OCH)
1180	163	1179 1231	В (ССН) кольца. В (ОСН)
1230 1250	259 465	1251	Q (СС) кольца Qas (С—О—С) асимметричное валентное:
1200			колебание эфирных связей
1295	75 98	1295	β (C=C—H) двойной связи
1308 1341	25	11/4	ф (СН ₂) веерные деформационные коле- бания—СН ₂ -
1369	29		ояния—сп2-
1390 1418	14 33		
1432	66		α (= CH ₂) ножничное деформационое ко- лебание
1467	66	1431	а (CH ₂) ножничное деформационное ко-
		1466	лебанне Q (СС) кольца
1501	362	1400	В (ССН) кольца
1594	140	1595	β (CCH), Q (CC)
1604 1659	259 18	1606) (CCH), Q (CC) Q (C=C)
2880	41	2882	Q_s (CH ₂)
2930	37	2932	Qas (CH ₂)
2995 2040	45 41	2996 3033	$Q_s (\stackrel{\cdot}{=} CH_3)$ $Q (\stackrel{\cdot}{=} CH)$
3052	45		Q (СН) кольца
3088	42	3081	$Q_{as} (= CH_2)$

^{*} Крутильно-деформационное колебание, при котором два атома Н и связь-С—С при двойной связи движутся в одном направлении, а неконцевой атом Н — впротивоположном.

делах нескольких cm^{-1} проявляются в спектрах всех исследованных соединений.

Колебательные спектры аллилфенилового эфира приведены в табл. 1 и на рис. 1. По поводу данных таблицы надо сделать несколько замечаний. Колебания, обозначенные греческими буквами, являются по форме деформационными, тогда как валентные колебания обозначены латинскими буквами. Фигурирующие в таблице значения є представляют собой кажущиеся молярные коэффициенты экстинкции.

Расчет абсолютных интегральных интенсивностей полос поглощения для исследованных соединений, у которых наблюдается значительное перекрывание большинства полос, представляет значительные труд-

ности и не входил в задачу нашего исследования.

При переходе от аллифенилового эфира к его монозамещенным в кольце производным общая картина спектра резко меняется. При этом, как показал анализ спектров этих соединений, природа заместителя X влияет на спектр незначительно, в то время как положение его в кольце существенно (рис. 2). Оказалось, что спектры замещенных в одинаковых положениях соединений весьма схожи. Это позволило свести спектральные данные по орто-, мета- и пара-изомерам в отдельные таблицы, соответственно 2, 3, 4. Интерпретация спектров основана на сопоставлении с данными по спектрам соответствующих ксилолов. Спектры исследованных соединений в областях нормальных колебаний бензольного кольца оказались схожими со спектрами орто [8, 9], мета-[10, 11] и пара-[12, 13] ксилолов.

Колебания аллилоксильной группы, а также фрагментов С—СІ, С—Вг, С—СН₃, С—О—СН₃ соответствующих молекул рассматривались отдельно и, как показал анализ спектров, отнесение полос удается провести по аддитивной схеме, что говорит о слабом колебательном взаи-

модействии указанных структурных фрагментов.

В ИК спектроскопии существуют два независимых критерия определения изомерной формы дизамещенных бензолов [14]. Один из них основан на числе и месте расположения полос неплоских деформационных колебаний ρ (СН), другой—на характеристичной для различных изомеров картине спектра в области обертонов колебаний, лежащих в области 1600—2000 см⁻¹. Первый из этих критериев полезен не во всех случаях, поскольку в области 650—850 см⁻¹ могут лежать и другие колебания, затрудняющие интерпретацию спектра. Так, в случае исследованных нами соединений такая ситуация имела место для хлорпроизводных, поскольку валентные колебания С—С1 лежали именно в этой области. Что касается второго критерия, то он не очень практичен, поскольку требует повторного измерения со значительно большим количеством вещества на оптическом пути.

Анализ колебательных спектров большого числа дизамещенных бензолов позволил обнаружить новый признак выявления изомерной формы, основанный на резкой зависимости интенсивности полосы в области 1600 см⁻¹ от местоположения заместителя. Как это видно из рис. 2 и данных табл. 2—4, полоса в области 1600 см⁻¹ у мета-изомеров значительно интенсивнее, чем у орто- и пара- аналогов. Сказанное ил-

1	7											and the same of the same of
X	(=C	$CI X = Br X = CH_3$		i,	X=	OC	H ₃	The second second				
икс		КР	икс		КР	икс		КР	икс	8	КР	Форма колебания
442	13		442	13		442	14	7	465	14		7 (C-C=C), ρ (CH), α (CC) 7 (COC)
	-	-		1		500	13	508		9.1	1	(606)
550 575	10		545	14 21		557 570	10		545	4		
585	10	582		13		584	10		585	24		7 (CCC)
648	7		665	29	663	650	7		650	14		Q (CBr), Q (CC), 7 (CCC)
680	32		677	52		715	51	77	695	14	- 100	ρ(CH), % (CC)
702 755	45 280		750	293		755	248	754	752	241	758	Q (CCI) ρ (CH), κ (CC)
					007	775	27	775	775	73	778	
840 875	29		838	14	837	845 875	11		850	21	844	ρ (CH)
939	150		935	178	939		150		936	147	935	
		110			. 110	998	4 11		1			χ (CCH), χ (=CH ₂)
1005		1005	1005		1005	1008	112	1005	1005	126	1005	
1026 1050	122 124	1045	1024	147 257	1038	1035	138	1055	1035	218	1056	Q (CC) $Q_s (C-O-C)$
1070			1058	211	1058		97		1060	95		β (CCH), Q (CC)
1115 1142	44	1108	1136	28 52		1130	181	(8)	1132	241		α (CCH)
1171	21		1170	28	1160	1170	21	1170	1165 1187		1167	
			70.5	18	177	1200	117	-	423		Par.	β (OCH) О (C—C)
1245 1258		1234 1251			1241 1257		215	1235 1251	1232 1262			Q (CC), Qas (C-O-C)?
1286		12:1			1295		65	1297	1295		1292	$Q_{as} (C-O-C)$ $\beta (C=C-H)$
1301	97	1300	1300	177		1313	74		1335	500	1336	φ (CH ₂)
1371	25	1365	1370	28	00	1368	28		1370	36		40 The State of th
1391	21		1388	24	100	1388		1388		14		CIL
1419 1431	40	1427	1416 1430	52 87	1429	1415	37 83	1414		40 73	1432	$\alpha (= CH_2)$ $\alpha (CH_2)$
1455	123		1450	153	170	1445	57	40	1448	64	473	Q (CC), β (CCH), γ (CCC)
1465 1493	92 405		1461	115	1	1468 1500	117 341	70	1463		1464 1506	
1598		1587	1582	69	1582		83		1599	153	1602	Q (CC), \$ (CCH), 7 (CCC)
1660	14	1601 1655	1593 1658		1596 1656			1613 1657	1657	21	1657	Q (CC), β (CCH), γ (CCC) Q (C=C)
			13	1		2 3		1	2845	86	2847	\tilde{Q}_{s} (CH ₃)
2885 2940	32	2870	2880 2935			2875 2930		2975 2929		64	2932	Qas (CH ₂ , CH ₂) Qas (CH ₂)
	1371					2960	49	- 16	2950	81	127	Qas (CH ₂)
3000 3035	14	3025	3000 3032		2998 3027	2995 3038		2995 3032	3012	56	3013	$Q_s (= CH_2)$ Q (= CH)
3085	36	3080	3080		3082			30B3	3078	52	3081	Q (= CH) кольца. Qas (= CH ₂)
	11		- 7	10-1						5	100	

люстрируется графиком, приведенным на рис. 3. По оси ординат здесь приводится отношение коэффициентов экстинкции полос при 1600 и 1500 см⁻¹. Выбор такого параметра практичен тем, что не зависит от количества вещества на оптическом пути спектрофотометра (данные

	X=Cl X=Br			X	=C	Нз	X=	-OC	Н,	- 91 5 July 12 10 10		
ико	-	KF	ико	2 8	КР	икс		КР	икс		КР	Форма колебання
448	1	54	443	28		448	20	445	464	14	465	7 (C-C=C) 7 (COC)
540 572	2	57	540 9 572			544 575	14 21			10		1 (0.00)
645 685	170	64	8 640	8		650	178		648 683	294	638	
705	48	المتالية الأ		1.50	000	090	1115			254		p (CH),
		76			758		17				733 756	
775 848	163	84		163 84		850	204 24		770 852	218 125		β (CH)
865 880	104 74		863	132		862	20 44		71			ρ (CH)
897 937	127			157		932	166	937	932	197		ρ (= CH ₂)
999	150 163		999 1008	157	1003	999	72		995 1005	64 101	1 0 01	γ (CCH), γ (=CH _a)
1035	237		1039 1072	228	1035	1042 1092	117		1052 1090	249	1090	Q. (COC)
1080	94	1104	1098 1165	43	1165	1105	20 256		933		1163	β (OCH), β (CCH), β (C=CH ₃),
1164	1		1100	0.				1180		2 93	1210	β (OCH)
1236			1232		1234 1251	1066	200	1066	-			0 (0 0 0)
1255 1290	228	1296	1251 1290	190	1295	1295	184	1266 1294			1272 1295	Q_{as} (C $-O-C$) β (C=C $-H$)
1313 1332	132 56	000	1312 1332	126 56		1316 1335	75 31		1341	الماساعا	1343	φ (CH ₂)
1371 1391	31		1371 1391	66 31		1370 1388	28 21	1388	1370 1390	60 29		
1419 1432		1416 1430	1430	163	1430	1417 1430	39 84	1430	1416 1431	56 110		$\alpha (= CH_2)$ $\alpha (CH_1)$
1470	126		1467	126	1	1465	102	1463		211 184	1465	$Q'(CCI), \beta(CCH), \gamma(CCC)$ $\alpha(CH_3)$
1487 1578	418 292	1590	1483 1582	402 292	1581		204 185		1500	472	,	Q(CC), B(CCH), Y(CCC)
1694 1658	533	1606	1599 1658	418	1597 1655	1609	205	1608 1656		511 26		Q (CC), β (CCH), γ (CCC), Q (CC), β (CCH), γ (CCC), Q (C=C)
			2880		2878	100			2848	92 2 52		Q_s (CH _s)
2880 2935			2935		2943	2932	75	2931	2930	36 2 52 2	916	Q _s (CH ₃ , CH ₃) Q _{as} (CH ₃)
3000	23	2995	3600		2997		43 39	3	951 015	64		Qas (CH ₂) Qs (=CH ₂)
3035 3085	31		3033 3080	31 3	1027 3080	3051	43 3					Q (=CH) $Q (=CH)$ KONDERA, $Q_{as} (=CH_2)$
3098	39		3098	35		3097	31	3	1090	40 3	090	Qas (= CH2), Q (= CH) мольца:

табл. 2—4 показывают на относительное постоянство ϵ_{1500} в ряду исследованных соединений). Из рис. З видно, что мета-изомеры по обнаруженному признаку легко отличимы от орто- и пара- изомеров. Различие между орто- и пара- изомерами менее броское, котя и в данном

Интерпретация колебательного спектра *пара*-замещенных аллилфениловых эфиров $OCH_2CH=CH_2$

x	X=Cl X=Br			r	X =	- CF	i,	X=	OC	Н,		
икс	3	КР	икс		КР	икс	g	КР	икс	•	КР	Форма колебания
524 555	96 14		521 552	101		525 541	78 21		526	21		7 (COC)?, p (CH)
630 642	36 51			59 11 7	650	648	7 7	650	630 650	14 11	645	Q (CBr) 7 (CCC)
692	78	692	670	42			01	205	720	21 178	714	Q (CC), Q (CBr), 7 (CCC)
810 830	40 375		810 829	50 262		832	148	765 828	840	264	838	ρ (CH), ∞ (CC)
935 1005		1006	998	170 120	997	995	21 136 65		936 995	166 75		p(=CH ₂)
1015	184	-	1008	204		1037	148	1007	1003 1035 1048	185 415	1008	7 (CCC) Q. (COC) Q. (COC)
1100 1112 1122	91 40	1102	1080 1110 1121	157 46 46	1082	1118 1128 1161	51 52 40 21		1116	98	1175	Q (CC), β (CCH)
1178 1235 1251	345		1178 1235 1250	425			171 250	1222	1187 1224 1240	155 445	1194	β (OCH), β (CCH) Qas (COC)?, Q (CC)
1294 1370		300	1290 1366	-	1 64	1270 1296 1370	136	1298	1265 1295 1370	103	1268 1298	487 (000)
1391 1415	21 36		1390 1410 1430	26 38		1388 1415 1432	25 40	1389 1415	1390 1415 1432	21 52	-35	α (=CH ₂)
1430 1469	96 91 636	-	1465	101		1465 1465	64 511		1452 1471 1518	112	1462	Q (CC), β (CCH), γ (CCC)
1579 1604 1659	91 105		1585 1597 1656	128 91	1586 1597	1595	52 91	1622	1600 1620 1656	35 17	1597 1620 1653	Q (CC), F (CCH), 7 (CCC)
2885 2930		-35	2880 2930	46	2883	2875 2932	73	2875	2845 2870 2920	117	2840	О ₅ (СН ₃) О ₅ (СН ₃ , СН ₃)
2998 3032	21		2998 3033	26	2993	2998 3042	48	2998	29 4 5 3012 3060	102	2942 3017	Qas (CH ₂) Qs (= CH ₂)
3095	28	3083	31.80 3096		3081	3075 3095		3080	3000 3097		3083	0 (= CH) 0 (= CH) кольца, Qas (= CH ₂) Qas (= CH ₂), Q (= CH) кольца
		- 1		1 -		-	1	19.		1	1	

случае интервалы значений $\left(\frac{\varepsilon_{1600}}{\varepsilon_{1500}}\right)_0 = 0,25-0,3$ и $\left(\frac{\varepsilon_{1600}}{\varepsilon_{1500}}\right)_n = 0,08-0,17$ не перекрываются.

Обнаруженная закономерность не связана с присутствием кислородного атома, осуществляющего р-л-сопряжение с бензольным коль-

цом, поскольку аналогичная картина, как показал анализ литературных данных, имеет место и у соответствующих ксилолов. Наблюдаемое явление носит, по-видимому, общий характер и, учитывая высокую характеристичность полос в области 1470—1640 см⁻¹ для соединений, содержащих бензольное кольцо, может служить полезным критерием, помогающим идентификации изомеров.

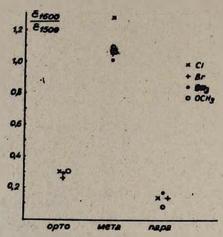


Рис. 3. Соотношение коэффициентов экстинкции ИК полос поглощения в области 1600 и 1500 cm^{-1} в зависимости от положения заместителя.

ՄԵԿ ՏԵՂԱԿԱԼՎԱԾ ԱԼԻԼՖԵՆԻԼԱՅԻՆ ԵԹԵՐՆԵՐԻ ՏԱՑԱՆՈՎԱԿԱՆ ՄՊԵԿՏՐԵՐԸ

S. B. Uniterhabit, 2. 2. Apsendant, a. B. ugigant & f. B. uguapiant

Ձափված են ալիլֆենիլային եթերի և նրա orpn-, մեթա- և պաrա-տեղակալված ածանցյալների տատանողական սպեկտրերը։ Կատարված է կլանմանլորտային ճնշման տակ, երբ բնական գազ։ օդ հարաբերությունը եղել է 3:1տեղակալված բենզոլների իզոմեր ձևի բացահայտման նոր սպեկտրաը չափանիշ։

THE VIBRATIONAL SPECTRA OF MONOSUBSTITUTED ALLYLPHENYL ETHERS

T. S. KURTIKIAN, H. H. PETROSSIAN, A. S. AZIZIAN and E. S. AGHAVELIAN

The vibrational spectra (IR and Raman) of allylphenyl ether and its monosubstituted ortho, meta and para derivatives have been measured. The absorption bonds have been assigned to the normal vibrations of molecules. A new spectral model for the determination of isomeric forms of disubstituted benzene has been found.

ЛИТЕРАТУРА

- 1. Colthup N. B. J. Am. Opt. Soc., 1950, vol. 40. p. 397.
- 2. Пат. 1.553.407 (1969); Фр./Rips R., Derappe C. С. A., 1970, vol. 72, p. 66613.
- 3. Пат. 17.013 (1967) Яп./Типака Т., Kitakata, Nagal Y.— С. А., 1868, vol. 68. р. 95560.
- 4. Пат. 6 921.217 (1969) Яп.Кишапотапі, Тапака К. С. А., 1970, vol. 72, p. 56510.
- 5. Пат. 3.422.062 (1962) США/Segal Ch., Faurote Ph. C. A., 1969, vol. 70, p. 58641,
- 6. Ковнер М. А., Снегирев Б. Н. Опт. и спектр., 1960, т. 9, с. 170.
- 7. Перегудов Г. В., Ковнер М. А Опт. и спектр., сб. 2, Молекулярная спектроскопия, 1963, с. 155.
- 8. Ковнер М. А., Богомолов А. М.-Овт и спектр., 1959, т. 7, с. 751.
- 9. Богомолов А. М. Опыт и спектр., 1961, т. 10, с. 322.
- 10. Колнер М. А., Богомолов А. М. Опт. и спектр., 1958, т. 4, с. 301.
- 11. Снегирев Б. Н. Опт. и спектр., сб. 2, Молекулярная спектрокопия, 1963, с. 104.
- 12. Богомолов А. М. Опт. и спектр., 1962, т. 12, с. 186.
- 15. Снегирев Б. Н. Опт. и спектр., 1962, т. 12, с. 696.
- Наканиси К. Инфракрасные спектры и строение органических соединений. М.,... Мир, 1965, с. 32.

Армянский химический журнал, т. 39, № 9, стр. 553-557 (1986г.)

УДК 541.1+542.943+547.211+542.945.27

ЗАКОНОМЕРНОСТИ ПРОЦЕССА ПРЕВРАЩЕНИЯ ХАЛЬКОПИРИТА ПОД ВОЗДЕЙСТВИЕМ ЦЕПНОЙ РЕАКЦИИ ОКИСЛЕНИЯ ПРИРОДНОГО ГАЗА

В. Р. БАГДАСАРЯН, О. М. НИАЗЯН и А. А. МАНТАШЯН Институт химической физики АН Армянской ССР, Ереван Поступило 19 XII 1984

Изучены закономерности превращения халькопирита под воздействием цепной газофазной реакции окисления природного газа при Т=973К и соотношении природного газа и воздужа 3:1.

Установлено, что продуктами реакции являются H_2S , CS_2 и SO_2 , выходы которых зависят от интенсивности протекання цепной газофазной реакции и меняются с изменением диаметра реактора, а также времени контакта газофазной реакции.

Рис. 3, табл. 1, библ. ссылок 4.

В работах [1—3] показано, что цепная реакция окисления природного газа при контактировании с твердофазными неорганическими соединениями—сульфидами металлов—вызывает их превращения. В этих условиях с заметными скоростями протекают реакции десульфуризации. На примере халькопирита было установлено, что в начале процесса наблюдается выделение SO₂, выход которого реэко падает во времени, затем в продуктах реакции обнаруживается сероводород. Далее выделение SO₂ прекращается, и процесс протекает с образованием только H₂S.

В настоящей работе изучалось влияние диаметра реактора, времени контакта газофазной реакции, массы концентрата на интенсивность цепной газофазной реакции превращения халькопирита в сложном со-

553 .