a copolymerization process. The copolymerization constants have been determined and the homopolymerization kinetics of the izomers investigated.

ЛИТЕРАТУРА

- 1. Гзырян А. Г., Даниелян В. А., Мацоян С. Г. Арм. хим. ж., 1982, т. 35, № 8. с. 543. 2. Гзырян А. Г., Даниелян В. А., Сардарян А. Е., Егоян Р. В., Дарбинян Э. Г., Мацоян
- С. Г. Арм. хим. ж., 1983, т. 36, № 4, с 234
 3. Макаров К. А., Воробьев Л. Н., Николаев А. Н., Сюда Е. ВМС, 1968, Б10, с. 757.

4. Оудиан Дж. — Основы химин полимеров. М., Мир, 1974, с. 377.

Армянский химический журнал, т. 39, № 6, стр. 373—378 (1986 г.)

УДК 598+78

О РЕАКЦИИ В-АРОИЛАКРИЛОВЫХ КИСЛОТ С ГЕТЕРОЦИКЛИЧЕСКИМИ АМИНАМИ

Р. Дж. ХАЧИКЯН, Г. В. ГРИГОРЯН н С. Г. АГБАЛЯН Институт органической химин АН Армянской ССР, Ереван Поступило 15 V 1985

Изучена реакция β-ароилакриловых кислот с гетероциклическими аминами. Установлено, что в зависимости от строения амина и условий реакции происходит присоединение по двойной связи с образованием α-аддукта, соли аддукта, либо соли β-ароилакриловой кислоты с соответствующим амином.

Табл. 5, библ. ссылок 4.

Ранее нами были изучены реакции β-ароилакриловых кислот с индолом и его производными, а также с производными пиррола [1, 2].

С целью синтеза биологически активных веществ продолжено изучение реакции β-ароилакриловых кислот с некоторыми гетероциклическими аминами—этиленимином, имидазолом, аминопиридинами, 4-аминотриазолом, уротропином и пиперидином.

Необходмо отметить, что реакция присоединения аминов алифатического и ароматического рядов изучена на ряде примеров. Установлено, что нуклеофильная атака направлена по α-углеродному атому этиленовой связи β-ароилакриловых кислот и приводит к образованию α-амино-β-ароилпропионовых кислот [3]. Нашими работами было по-казано, что в ряде случаев могут быть получены соли аддуктов [4].

При взаимодействии с гетероциклическими аминами в ацетоне при комчатной температуре β-ароилакриловые кислоты образуют соли. Образование их подтверждено данными ИК спектров, в которых зафиксировано отсутствие полосы поглощения карбонила карбонильной группы, имеются полосы поглощения, характерные для солей аминов, сохраняются полосы поглощения транс-СН — СН связи и карбонила, сопряженного с ароматическим ядром.

ArCOCH=CHCOOH $+ R \longrightarrow ArCOCH=CHCOO^{-}RH^{+}$ I $R=N_4(CH_1)_6$

Arcoch=chcooh+RH
$$\longrightarrow$$
 Arcoch=chcoo⁻RH₃⁺

II

R= H₂C—CH₃, $\stackrel{N}{\downarrow}$, N(CH₃)₈

Arcoch=chcooh+RH₃ \longrightarrow Arcoch=chcoo⁻RH₃⁺

III

$$R = \left\langle \begin{array}{c} -N \\ N \end{array} \right\rangle, \qquad \left\langle N - N \left\langle \begin{array}{c} N \\ N \end{array} \right\rangle$$

При проведении реакции в воде образуются соли аддуктов (табл. 4).

$$ArCOCH=CHCOOH+RH\longrightarrow ArCOCH_{2}CHCOO^{-}RH_{3}^{+}$$

$$IV$$

$$R=H_{3}C\longrightarrow CH_{3}$$

При взаимодействии водных растворов калиевых солей β-ароилакриловых кислот с имидазолом и этиленимином с последующим подкислением образовались, как и следовало ожидать, α-замещенные-β-ароилпропионовые кислоты V (табл. 5).

В отличие от имидазола и этиленимина в этих условиях *m*- и γ-аминопиридины не присоединяются по двойной связи β-ароилакриловых кислот.

ArCOCH=CHCOOH + RH
$$\xrightarrow{\text{KOH, HCI}}$$
 ArCOCH₂CHCOOH

V

$$R = H_2C \xrightarrow{\text{CH}_2} CH_2,$$

Биологическими испытаниями было установлено, что соли β-ароилакриловых кислот I—III обладают бактерицидной, фунгицидной и гипотензивной активностью.

Некоторые аддукты, являющиеся α-замещенными-β-ароилпропионовыми кислотами, обладают диуретической активностью.

Экспериментальная часть

ИК спектры получили на приборе UR-20 в вазелиновом масле. ТСХ проводили в системе бензол—ацетон, 1:3, «Silufol», проявитель—пары йода.

Соли β -ароилакриловых кислот с гетероциклическими аминами I, III. К раствору 0.01 моля β -ароилакриловой кислоты в 10-15 мл ацетона прилили раствор 0.01 моля первичного, вторичного или третичного амина в 5 мл ацетона. Смесь выдерживали 24 ч при комнатной температуре $(18-20^\circ)$. Затем осадок отфильтровали, промыли 5 мл холодного эцетома, высушили ИК спектры, $c M^{-1}$: 1610, 1600, 1580, 1540, 1510 (CH=CH, CH=N аром., COO⁻), 1680 (C=O сопряж.), 2400-2800 (солевой эффект), 980 (CH=CH tpanc) (ta6n. ta6n.

Таблаца 1

		1 20		N. %			
Ar	R	Выход,	. T °C	найдено	BLAUIC-		
C ₆ H ₅ ·H ₂ O	N ₄ (CH ₂) ₆	64	118-119	16,75	16,90		
n-CH ₃ C ₄ H ₄		76	168—169	17,00	17,20		
n-CIC ₆ H ₄ -H ₂ O		52	182-183	15,19	15,41		
n-BrC _a H ₄	17.5	52	128-130	14,17	13,99		

Таблица 2 Соли II

Ar		%	Т. пл., °С (ацетон)	Найдено		%	Вычислено, %		
	R	Выход,		С	н	N	С	Н	N
C ₆ H ₅	-N(=N	99	180	59,4	5,6	10,3	59,9	5,4	10,7
n-CH ₃ C ₆ H ₄ ·H ₂ O	-N_N	87	130	60,8	5,9	10,3	60,9	5,8	10,1
β-тетралил·H ₂ O	-N = N	75	95	64,8	6,3	8,5	64,5	6,4	8,9
C _e H _E ·H ₂ O	-N	87	97	61,0	6,8	6,1	60,8	6,4	5,9
n-CH ₃ C ₆ H ₄ ·H ₂ O	-N<	72	108	62,2	6,5	5,8	62,1	6.8	5,6
β-тетралил*·Н ₂ О	_N<	93	97	62,6	7,5	4,9	62,1	7,5	4,5
n-CH ₃ C _e H ₄	N(CH ₂) ₅	87	166—167	13	2 2	5,1	1179	745	5,4
n-CIC ₆ H ₄	N(CH ₂) ₅	54	167—168	4-1		4,7	100		4,7

^{*} Дигидрат

CONH III									
- 1 N		ж Т. пл °С (ацетон)	Т. пл °С	Найдено, %			Вычислено, %		
Ar	R FOX MR		С	Н	N	С	н	N	
n-CH ₃ C ₄ H ₄	>n-(75	131	67,4	5,8	9,8	67,6	5,7	9,8
β-тетраяня	>N-{	82	120	70,3	6,5	8,6	70.4	6,2	8.6
β-тетралня*	>n-{	82	177	66,6	6,4	8,5	66,6	6,5	8,2
4-BrC ₆ H ₄	>n-{	74	151	51.5	4,0	8,3	51,6	3,8	8,0
C _s H ₅	N N N	65	135	+		20,5			20,9
л-CH ₃ C _e H ₄	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	70	140			20,4			20,0
4-CIC ₆ H ₄	N_N	53	135			19,0			19,4
4-BrC ₆ H ₄	\z-z-\z-\	68	145—146			16,5			16,7

[•] Моногидрат,

Имидазолиевые соли β -ароил- α -(N-имидазолил) пропионовых кислот IV. Смесь 0,01 моля β -ароилажриловой кислоты и 1,4 г (0,02 моля) имидазола в 5 мл воды выдержали при комнатной температуре 3 дня. Реакционную смесь упарили на водяной бане. Твердый кристаллический осадок прокипятили в сухом ацетоне, после охлаждения отфильтровали и промыли ацетоном, высущили. ИК опектры, cm^{-1} : 1610, 1580 (CH=CH, CH=N аром., COO⁻), 1680 (C=O), 2400—2800 (солевой эффект) (табл. 4).

Ar	R	F T. na., °C	Найдено, 🕱			Вычислено, %			
	, and the second	Выхо	Т. пл., °С (ацетон)	С	Н	N	С	н	N
C ₆ H ₅	H ₂ C—CH ₂	93	146—148	59,6	6,9	10,0	59,9	7,2	9,9
n-CH ₃ C ₆ H ₄	H ₂ C—CII ₃	78	132	61.5	7,4	9,1	61,2	7,5	9,5
n-CH₃C ₆ H ₄	N,	93	10)	59,2	5,3	15,9	59,3	5,3	16,2
р-тегралил	N N	81	153155	62,1	5,6	13,8	62,4	5,8	14,0
β-тетралил	H ₂ C CH ₂	65	125—127	64.0	7,0	8,3	64,2	7,2	8,4

Пропноновые кислоты V

Таблица 5

Пропноновые кислоты V									
Ar	R		Т пл., С	Найдено, %			Вычислено, %		
- 41			(ацетон)	С	Н	N	С	Н	N
C _€ H ₅	N N	75	182	59,7	5,2	10,6	59.5	5,4	10,7
C ₆ H ₅	H ₂ C—CH ₂	71	134—135	60,9	6,0	6,1	60,8	6,4	6,9
n-CH₃C ₆ H₄	I N	84	117—119	60,7	5,9	10,0	60,8	5,8	10,1
n-CH ₃ C ₆ H ₄	H ₂ C—CH ₂	91	153 – 154	62,5	6,4	5,5	62.1	6,8	5,6
β-тетралил	T _N	78	166	64,6	6,6	8,6	64,5	6,4	8,8
β-тетралил	H ₂ C—CH ₂	73	140—141	64,6	7,1	4,7	64,8	7,1	4,7
n-CH ₃ OC ₈ H ₄	T _N	59	135	57,5	5,2	9,8	57,5	5,5	9,6
n-CH ₃ OC ₆ H ₄	H ₂ C—CH ₂	87	150—152	58,2	6,1	5,6	58,4	6,4	5,2

Азиридиниевые соли β -ароил- α -(N-азиридинил) пропионовых кислот IV. Получили аналогично. ИК спектры, c_M -1: 1615, 1580 (CH=CH аром., COO⁻), 1680 (C=O сопряж.), 2400—2800 (солевой эффект) (табл. 4).

β-Ароил-α-(N-азиридинил) пропионовые кислоты V. Смесь 0,01 моля β-ароилакриловой кислоты, 0,4 г (0,01 моля) этиленимина и 0,56 г (0,01 моля) КОН в 10 мл воды выдержали при комнатной температуре 2 дня. Реакционную смесь нейтрализовали разбавленным раствором соляной кислоты. Выпавший осадок отфильтровали, несколько раз промыли водой. После высушивания прокипятили в сухом ацетоне, отфильтровали, промыли ацетоном и высушили на воздухе. ИК спектры, см-1: 1720—1735, 1680—1685 (С=О), 3350 (ОН), 1620, 1580 (СН=СН аром.) (табл. 5).

 β -Ароил- α -(N-имидазолил) пропионовые кислоты V. Получили по вышеприведенной методике. ИК опектры, см⁻¹: 1720—1730, 1675—1685 (C=O), 3340(OH), 1625, 1580 (CH=CH, CH=N аром.), (табл. 5).

ՀՆՏԵՐՈՑԻԿԻԿ ԱՄԻՆՆԵՐԻ ՀԵՏ β–ԱՐՈՒԼԱԿՐԻԼԱԹԹՈՒՆԵՐԻ ՌԵԱԿՑԻԱՅԻ ՄԱՍԻՆ

Ռ. Ջ. ԽԱՉԻԿՑԱՆ, Գ. Վ. ԳՐԻԳՈՐՅԱՆ և Ս. Գ. ԱՂՔԱԼՅԱՆ

Ուսումնասիրված է β-արոիլակրիլաβթուների ռեակցիան հետևրոցիկլիկ ամիննիների հետ։ Հաստատված է, որ կախված պայմաններից և ամինների կառուցվածքից տեղի է ունենում միացում կրկնակի կապին, առաջացնելով α-ադուկտ, ադուկտի աղ կամ β-արոիլակրիլաթթուների աղ համապատասխան ամինի հետ։

THE REACTION OF \$-AROYLACRYLIC ACIDS WITH HETEROCYCLIC AMINES

R. J. KHACHIKIAN, G. V. GRIGORIAN and S. G. AGHBALIAN

The reaction of β -aroylacrylic acids with heterocyclic amines has been investigated. It has been established that addition to the double bond occurs forming α -adducts, their salts or salts of β -aroylacrylic acids with the corresponding amines depending on the reaction conditions and the structure of the amines.

ЛИТЕРАТУРА

- 1. Агбалян С. Г., Григорян Г. В., Джанинян А. А. ХГС, 1974, № 8, с. 1079.
- 2. Агбалян С. Г., Галоян Г. А., Григорян. Г. В. Арм. хим. ж., 1974, т. 27, № 8, с. 673.
- 3. Несмеянов А. Н., Рыбинская М. И., Рыбин Л. В. Усп. хим., 1967, т. 36, с. 1089.
- Агбалян С. Г., Хачикян Р. Дж., Туманян К. И. Арм. хим. ж., 1978, т. 31, № 2—3, с. 163.