Армянский химический журнал, т. 39, № 10, стр. 603—608 (1986 г.)

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.574.4+547.636.3

термическое разложение N-[α- (Бензилтио) Бензил] Анилина

Р. С. ВАРТАНЯН, А. Л. ГЮЛЬБУДАГЯН, А. А. ҚАРАПЕТЯН и Ю. Т. СТРУЧКОВ

Институт тонкой органической химии им. А. Л. Миджояна Аli Армянской ССР, Ереван Институт элементоорганических соединений им. А. Н. Несмеянова АН СССР, Москва

Поступило 19 IV 1985

Изучено термическое разложение N-[α-(бензилтно)бензил]аниляна. Показано, что при 225—230° продуктом реакции является *транс*-стильбен. Рис. 2. табл. 3. библ. ссылок 8.

Ранее нами было показано, что при взаимодействии 5-бензилиденамино-1,3-дифенилпиразола с меркаптоуксусной кислотой и бензилмеркаптаном продукты присоединения по связи C=N подвергаются перегруппировке [1]. С целью проверки возможностей этой перегруппировки в ароматическом ряду в настоящем сообщении пиразольное кольцо было заменено бензольным.

Реакция бензилиденанилина с бензилмеркаптаном описана в литературе как приводящая к нормальному продукту присоединения N-[α-(бензилтио)бензил]анилину I [2].

SCH2 $-N=CH - N+HSCH_2 - N+CH_2 - N+CH_2$

Однако в спекте ПМР соединения I — вещества с четкой точкой плавления, соответствующей литературным данным, наряду с сигналами ожидаемых протонов наблюдаются также сигналы исходных бензилиденанилина и бензилмеркаптана. ТСХ также указывает на наличие в выделенном продукте трех веществ.

Наблюдаемому явлению можно дать следующеее объяснение. Описываемая реакция является обратимой. В растворах устанавливается равновесие между исходными веществами и продуктом реакции (спектры ПМР и ТСХ снимаются в растворителях). При кристаллизации же равновесие смещается в сторону продукта реакции.

Для подтверждения сделанного предположения было предпринято рентгеноструктурное исследование 1 с использованием монокристал. ла, полученного перекристаллизацией из изопропилового спирта.

Строение I с длинами связей в проекции, дающей разрешение всех неводородных атомов молекулы, показано на рис. 1. Координаты неводородных атомов приведены в табл. 1, а валентные углы—в табл. 2. Важные торсионные углы, характеризующие относительные ориентации фрагментов молекулы, приведены в табл. 3.

Рис. 1. Строение молекулы I с нумерацией атомов.

Геометрические параметры находятся в хорошем согласии с соответствующими обычными значениями [3]. В частности, длины связей S-C (1) 1,822 (4) и S-C (15) 1,823 (4) Å согласуются со стандартным значением S-C (sp³) 1,832 Å. Длины связей C (1)-C (2), 1,516 (5), C (1)-N (8) 1,435 (5) и N (8)-C (9) 1,378 (5) Å также хорошо согласуются со стандартными значениями для C (sp³)-C (sp³), N (sp³)-C (sp³) и N (sp³)-C (sp³) связей, соответственно. Отклонения валентных углов C (1) C (2) 105,8 (2), C (2) C (1) N (8) 115,4 (3) и C (1) N (8) C (9) 124,2 (3)° от идеального тетраэдрического значения, по-видимому, вызваны внутримолекулярным сокращенным контактом между N (8)..C (3) 2,920 (5) Å, что явно меньше равновесного значения 3,20 Å [4].

Таким образом, рентгеноструктурное исследование пожазывает, что в кристалле присутствует только І. Это подтверждает предположение о равновесном характере взаимодействия бензилиденанилина с бензилмеркаптаном.

Исследования показали, что в условиях, при которых проходила упомянутая выше [1] перегруппировка (140—150°), полученное соединение I никаким изменениям не подвергается. При нагревании же его до 225—230° наблюдается выделение сероводорода, а после охлаждения из смеси удалось выделить кристаллическое вещество, которое, по данным рентгеноструктурного анализа, оказалось *транс*-стильбеном IIa.

IIa, $R_1 = R_2 = H$; II6. $R_1 = R_2 = OCH_3$; IIIB. $R_2 = H$, $R_2 = OCH_3$.

Таблица І

Координаты	неводородных	ATOMOB XI	о молекул	N-(бензилтио)	бензиламина І	
		и транс-с	тильбена II			

Структура І			Структура Иа				
Атом	x/a	у/	/c	Атом	x/e	у/	/c
S	981 (1)	731 (1)	888 (0)	C (A)	5296 (2)	720 (6)	308 (3)
C (1)	3034 (5)	220 (2)	8698 (1)	C (1A)	5825 (2)	599 (6)	1593 (3)
C (2)	4516 (4)	797 (1)	8862 (1)	C (2A)	5756 (2)	-1217 (6)	2304 (3)
C (3)	5291 (6)	1395 (2)	8574 (2)	C (3A)	6260 (3)	-1167 (7)	3488 (3)
C (4)	6575 (6)	1940 (3)	8735 (2)	C (4A)	6835 (2)	658 (7)	3975 (3)
C (5)	7118 (6)	1893 (3)	9184 (2)	C (5A)	6900 (2)	2446 (7)	3271 (3)
C (6)	6377 (6)	1309 (3)	9478 (2)	C (6A)	6408 (2)	2416 (7)	2107 (3)
C (7)	5077 (6)	762 (3)	9317 (1)	C (B)	228 (2)	938 (5)	4972 (2)
N (8)	2993 (5)	59 (2)	8209 (1)	C (1B)	759 (2)	1327 (5)	4234 (2)
C (9)	3990 (5)	—557 (2)	7991 (1)	C (2B)	1266 (2)	3365 (5)	4365 (3)
C (10)	3631 (6)	764 (3)	7530 (1)	C (3B)	1790 (2)	3790 (6)	3710 (3)
C (11)	4607 (8)	-1382 (3)	7310 (2)	C (4B)	1814 (2)	2192 (6)	2896 (3)
C (12)	5937 (8)	—1814 (3)	7534 (2)	C (5B)	1308 (2)	178 (6)	2739 (3)
C (13)	6302 (7)	-1604 (3)	7985 (2)	C (6B)	788 (2)	-252 (5)	3399 (3)
C (14)	5350 (6)	- 987 (2)	8214 (2)		100 1	11.000	
C (15)	-600 (6)	—119 (3)	8764 (2)		1. 1.	a come a	- 8- 6-
C (16)	-307 (5)		9062 (1)				
C (17)	534 (5)	1598 (2)	8886 (2)				
C (18)	900 (6)	-2283 (3)	9175 (2)		1 1/2	Section "	1. A
C (19)	387 (6)	-2268 (3)	9626 (2)			and the second	
C (20)	-454 (6)	-1569 (3)	9801 (2)				
C (21)	-801 (6)	-880 (3)	9523 (2)		1.1.1-0		0.000
		0 8 2					

Валентные углы ω (σ) (град.) молекулы l

1

C (2) C (3) C (4)	121,3 (4)	C (2(C (1)	105,8 (2)
C (3) C (4) C (5)	120,0 (4)	C (2) C (1) N (8)	115,4 (3)
C (4) C (5) C (6)	120,2 (5)	SC (1) N (8)	110,1 (3)
C (5) C (6) C (7)	119,8 (5)	C (1) N (8) C (9)	124,2 (3)
C (6) C (7) C (2)	120,7 (4)	C (1) SC (15)	100.3 (2)
C (3) C (2) C (7)	117,9 (4)	SC (15) C (16)	112,8 (3)
C (1) C (2) C (3)	122,1 (3)	C (16) C (17) C (18)	120.1 (4)
C (1) C (2) C (7)	119,9 (3)	C (17) C (18) C (19)	120,2 (4)
C (9) C (10) C (11)	120,1 (4)	C (18) C (19) C (20)	120,2 (5)
C (19) C (11) C (12)	121,6 (5)	C (19) C (20) C (21)	120,4 (5)
C (11) C (12) C (13)	118,3 (5)	C (20) C (21) C (16)	120,5 (4)
C (12) C (13) C (14)	121,4 (5)	C (21) C (16) C (17)	118,6 (4)
C (13) C (14) C (9)	120,4 (4)	C (15). C (16) C (17)	120,6 (4)
C (10) C (9) C (14)	118,1 (4)	C (15) C (16) C (21)	120,7 (4)
N (8) C (9) C (10)	119,6 (4)		
N (8) C (9) C (14)	122.3 (4)	and the second sec	

Таблица 2

Таблица З

Важные торсионные углы σ(т) в молекуле I

C (2) C (1)—N (8) C (9) C (2) C (1)—C (15) N (8) C (1)—C (15) C (1)—C (15) C (1)—C (15) C (16) SC (1)—N (8) C (9)	83,9 (5) -169,4 (4) 65,3 (4) 65,0 (4) -156,5 (5)	C (1) N (8)-C (9) C (10) N (8) C (1)-C (2) C (3) SC (1)-C (2) C (3) SC (15)-C (16) C (17)	168,8 (6) 25,4 (6) 96,2 (5) 22,6 (5)
--	--	--	---

Строение неоднократно исследованной методом рентгеноструктурного анализа [5—7] молекулы *транс*-стильбена II показано на рис. 2. *транс*-Стильбен кристаллизуется в пространственной группе P2₁/c с двумя независимыми молекулами (А и В), каждая из которых находится в частном положении и занимает кристаллографически раз-

ные центры симметрии (000) и $\left(\frac{1}{2}00\right)$. Координаты неводородных атомов приведены в табл. 1.

Наряду с *транс*-стильбеном в результате реакции образуются и другие вещества, на что указывает ТСХ смеси. Однако разделить и идентифицировать их не удалось.

Рис. 2. Строение молекулы Па с пумерацией атомов. В скобках приведены соответствующие значения в молекуле В.

Интересно, что в случае (4-метоксибензилиден)анилина образуются как *п,п'*-диметоксистильбен IIб, так и 4-метоксистильбен IIв, что говорит о сложном характере реакции.

Экспериментальная часть

Спектр ПМР снят на приборе «Varian T-60» (60 *МГц*) с использованием в качестве внутреннего стандарта ТМС.

Рентгеновокие эксперименты проведены на автоматическом 4-кружном дифрактометре «Хилгер-Уоттс» (λM , K_{α} , графитовый монохроматор). Параметры элементарных ячеек измерены на том же дифрактометре.

ристаллы соединения 1	ромбические, а II-моноклинные.
Молекула I	Молекула IIa
a = 7,5440 (6) Å	a = 15,705 (2) Å
b = 15,723(1) Å	b = 5,7253 (5) Å
c = 28,872 (2) Å	c = 12,379 (1) Å
	$\beta = 111,895$ (8)°
v = 3424, 6 (2) Å ³	v = 1032,8 (2) Å ³
M = 610,9	M = 180,25
$d_{BMR} = 1,18 \ r/cm^3$	$d_{\rm Hmg} = 1,16 \ r/cm^3$
z = 4	z = 4
Пространственная группа <i>Рсаb</i>	Пространственная группа P2 ₁ /c

Интенсивности 1466 (для 1) и 1014 (для IIa) независимых отражений в области $\theta \leq 26$ измерены методом $\theta/20$ -сканирования. В структурных расчетах, выполненных на ЭВМ «ECLIPSE S/200» по программам INEXTL [8], использованы 1458 и 759 отражений с $F^2 \geq 36$ (F) соответственно для I и IIa. Обе структуры расшифрованы прямым методом и уточнены методом наименьших квадратов в полноматричном анизотропном (изотропном для атомов водорода) приближении. Положения водородных атомов для обеих структур локализованы в разностных синтезах электронной плотности. Окончательные значения факторов расходимости R = 0,049 и $R_w = 0,041$ (для I) и R = 0,044 и $R_w = 0,045$ (для IIa).

N-[a-(Бензилтио)бензия]анилин (1) получают по [2]. Спектр ПМР (CDCl₂), 8, м. д.: 8,18 с (1H, N=CH), 7,8-6,90 м (3OH, 8C₆H₃), 5,13 с (1H, NCHS), 3,60-3,40 м (4H, 2CH₂), 1,47 т J=8 Гц (1H, SH).

транс-Стильбен (11а). З г (0,01 моля) І нагревают при 225—230° до окончания выделения сероводорода. После охлаждения к смеси добавляют 20 мл метанола, осадок фильтруют и перекристаллизовывают из метанола. Получают 0,95 г (53%) Па с т. пл. 127—128°.

п,п'-Диметоксистильбен (116) и 4-метоксистильбен (118). Смесь 2,1 г (0,01 моля) 4-метоксибензилиденанилина и 1,2 г (0,01 моля) бензилмеркаптана нагревают при 225—230° до прекращения выделения сероводорода. После охлаждения к смеси добавляют 20 мл метанола, выделившийся осадок обрабатывают 50 мл эфира. Нерастворившиеся кристаллы фильтруют. Получают 0,8 г (35%) 116 с т. пл. 214°. Эфирный раствор упаривают, остаток перекристаллизовывают из метанола. Получают 0,6 г (27%) IIв с т. пл. 135—136°. Спектры ПМР полученных соединений полностью соответствуют литературным данным.

N-α-(βսնջիլ β-h) βսնջիլ Անիլինի Ջսր ՄԱՅին Ճսղ ՔոիՄԸ

Ռ. Ս. ՎԱՐԴԱՆՑԱՆ, Ա. Լ. ԳՅՈՒԼԲՈՒԴԱՂՅԱՆ, Հ. Ա. ԿԱՐԱՊԵՏՏԱՆ L ՅՈՒ. S. ՍՏՐՈՒՉԿՈՎ

Ուսումնասիրված է Ν-α-(բենզիլβիո)բենզիլանիլինի ջերմային ճեղքումը։ Տույց է տրված, որ 220–230°-ում ռեակցիայի արդյունքում ստացվում է աբանա-ոտիլբեն։

THERMOLYSIS OF N-(BENZYLTHIO)BENZYLANILINE

R. S. VARTANIAN, A. L. GYULBUDAGHIAN, A. A. KARAPETIAN and Yu. T. STRUCHKOV

The thermolysis of N-(benzylthio)benzylaniline has been investigated. It has been shown that *trans*-stilbene is formed as the reaction product at $220-230^{\circ}$.

ЛИТЕРАТУРА

- 1. Вартанян Р. С., Гюльбудагян А. Л., Вартанян С. А. ХГС, 1984, № 4, с. 464.
- **2.** Stacy A. W., Day R. J., Morath R. J. J. Am. Chem. Soc., 1955, vol. 77, p. 3869. 3. Sutton L. E. – Tables of interatomic distances and configurations in molecules
- and lones. London, 1965.
- 4. Зефиров Ю. В., Зоркий П. М.-ЖСХ, 1976 т. 17, № 6, с. 994.
- 5. Finder C. J., Newton M. G., Allinger N. L. Acta Crystallogr., 1974, B30, p. 411.
- 5. Hokstra A., Meertens P., Aatse V. Acta Crystallogr., 1975, B31, p. 2813.
- 7. Bernstein J. Acta Crystallogr., 1975, B31, p. 1268.
- 8. Герр Р. Г., Яновский А. И., Стручков Ю. Т. Кристаллография, 1983,, т.28, № 5, с. 1244.

Армянский химический журнал, т. 39, № 10, стр. 608—612, (1986 г.)

УДК 547.344.818+547.234.911

1-ГЕТЕРИЛ-3-МЕТИЛ (ФЕНИЛ)-4-ФЕНИЛ-5-ЦИАНО-6-АМИНОПИРАНО[2,3-с]ПИРАЗОЛЫ

Р. С. ВАРТАНЯН, С. А. КАРАМЯН, Л. О. АВЕТЯН и Р. А. АКОПЯН

Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР, Ереван

Поступило 19 IV 1985

Взанмодействием 1-гетерил-3-метил (фенил)-5-пиразолонов с бензилидеималононитрилом получены 1-гетерил-3-метил (фенил)-4-((1'-фенил-2',2-дициано-1'-этил)-5-пиразолоны, которые в присутствии органических оснований циклизуются в соответствующие 1-гетерил-3-метил (фенил)-4-фенил-5-циано-6-аминопирано [2,3-с] пиразолы. Библ. ссылок 10.

Некоторые производные 2-аминопиранов, в том числе и конденсированные 2-амино-3-цианопираны, являются биологически активными соединениями и используются в качестве противоаллергических и про-

тивоастматических средств, а также пестицидов [1—3]. В настоящей работе синтезированы новые конденсированные бамино-5-цианопиранопиразолы, замещенные по первому положению пиразольного кольца O,S-содержащими насыщенными шестичленными гетероциклами, и исследованы их биологические свойства. Синтез осуществлен по схеме: