ЛИТЕРАТУРА

- 1. А. А. Матнишян, Л. С. Григорян, Э. А. Шароян, Арм. хим. ж., 36, 315 (1983).
- 2. К. Хигаси, Х. Баба, А. Рембоум, Квантовая органическая химия, Изд. «Мир», М., 1967.
- 3. K. Fukul, A. Imamura, T. Ionerawa, Ch. Nagata, Bull. Chem. Soc. Japan, 35, 33- (1962).
- 4. Энергия разрыва химических связей, Потенциал нонизации и сродство к электрону,. Под ред. В. Н. Кондратьева, Изд. «Наука, М., 1974.
- 5. W. Bonthrone, D. H. Reld, J. Chem. Soc., 1959, 2773.
- 6. H. P. Fritz, H. Gebaner, P. Fridrich, P. Ecker, R. Arters, U. Schubert, Z. Naturforsch, 33B, 498 (1978).
- 7. G. Wegner, Makromol. Chem. Suppl., 4, 155 (1981).
- 8. Л. А. Берлин, Химия полисопряженных систем, Изд. «Химия», М., 1973.

Армянский химический журнал, т. 38, № 9, стр. 595-596 (1985 г.)

КРАТКИЕ СООБЩЕНИЯ

УЛК 549.574: 542.936.73+542.952.173+547.593.2

ИССЛЕДОВАНИЕ КАТАЛИТИЧЕСКИХ СВОЙСТВ ПРИРОДНЫХ ЦЕОЛИТОВ ЗАКАВКАЗЬЯ. II

М. Н. ҚОСТАНДЯН, С. Г. БАБАЯН, М. Р. МУСЛЕВ в К. Г. МИРЗОЕВА Ереванский отдел неорганических материалов ВНИИ «ИРЕА» Институт нефтехимических процессов АН Азерб. ССР, Баку Поступило 4 V 1983

В Закавказье разведаны большие залежи природных цеолитов, которые могут быть использованы в различных областях народного хозяйства. Одним из перспективных направлений их применения может явиться область нефтехимии.

В сообщении [1] приводились результаты исследования превращения 1-гексанола на природных цеолитах Закавказья. Работа проводилась с целью получения сравнительных данных по каталитической активности цеолитов месторождений Новый Кохб Арм. ССР, Ай-Даг Азерб. ССР, Хекордзула Груз. ССР. При этом установлено, что эти цеолиты без предварительной химической обработки хорошо катализируют дегидратацию первичного гексилового спирта и изомеризацию полученного 1-гексена в 2-гексен. Активность всех трех катализаторов почти одинакова.

В продолжение исследований в этом направлении в настоящей работе изучено превращение циклогексанола на тех же природных цеолитах. Условия проведения опытов и методика определения продуктов реакции приведены в [1]. Результаты опытов приведены в таблице.

Полученные данные показывают, что степень дегидратации циклогексанола при низких температурах (250—350°С) значительно выше степени дегидратации 1-гексанола. Дегидратация сопровождается скелетной изомеризацией в 1- и 3-метилциклопентены (всего 3%).

$$\bigcirc -OH \xrightarrow{-H^{1}O} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc CH^{3}$$

Дегидратация циклогексанола на природных цеолитах Закавказья

Месторождение	Т-ра реакции. °C	Степень конверсии, %	Углеводородный состав катализата, масс. %		
			цикло-	1-метилцик- лопентен	3-метилцик- лопентен
Новый Кохб	250	76.6	97.4	2,3	0,3
	300	83.0	96.6	2,4	1.0
	350	/87.2	93.6	4,7	1,7
	400	87.2	84.3	12,0	3,7
	450	92.6	68.7	23,2	8,1
Ай-Даг	250	73,0	98,4	1.2	0.4
	300	80.0	97,6	1.8	0.6
	350	100,0	91,1	6.9	2,0
	400	100,0	65,2	26.3	8,5
	450	100,0	40,0	43.4	16,6
Хекордзула	250	81,0	96,8	2,7	0,5
	300	87,2	96,2	3,1	0,7
	350	89,4	82,2	13,5	4.3
	400	89,4	67,3	24,7	8.0
	450	93,6	54,2	31,1	14,6

При высоких температурах (400—450°) наряду с увеличением степени изомеризации циклогежсена в метилциклопентены наблюдается образование метилциклопентана вследствие перераспределения водорода и кокса на катализаторах.

ЛИТЕРАТУРА

1. М. Н. Костандян, С. Г. Бабаян, А. А. Мамедов, В. К. Халилзаде. А. Т. Худиев, М. Р. Мусаев, Арм. хим., 34, 72 (1981).

Армянский химический журнал, т. 38, № 9, стр. 596—599 (1985 г.)

УДК 543.42:541.49:541.124

О КОМПЛЕКСАХ И ПРОДУКТАХ РЕАКЦИИ ЙОДА С ТРИЭТИЛАМИНОМ

Ш. А. МАРКАРЯН и Л. А. СААКЯН Ереванский государственный университет Поступило 31 X 1984

Образование молекулярного комплекса с переносом заряда между йодом и триэтиламином состава 1:1 твердо установлено в результате исследований электронных спектров разбавленных растворов (10⁻⁴ — 10⁻⁵ моль/л) в и-гептане [1]. Известно также, что при больших концентрациях йода и триэтиламина (иэбыток) образуется гидроиодид триэтиламина Et₃N·HJ, что свидетельствует о превращении комплекса с выде-