ИССЛЕДОВАНИЯ В ОБЛАСТИ АМИНОВ И АММОНИЕВЫХ СОЕДИНЕНИЙ

CLXXXIII. ҚАТАЛИЗИРУЕМАЯ ОСНОВАНИЕМ ВНУТРИМОЛЕҚУЛЯРНАЯ ЦИҚЛИЗАЦИЯ СОЛЕЙ ДИАЛКИЛ(3-ФЕНИЛПРОПАРГИЛ) (3-α-НАФТИЛПРОПАРГИЛ) АММОНИЯ

> А. Т. БАБАЯН, Э. О. ЧУХАДЖЯН, К. Г. ШАХАТУНИ, С. В. ЛИНДЕМАН и Ю. Т. СТРУЧКОВ

Институт органической химин АН Армянской ССР, Ереван Институт элементоорганических соединений им. А. Н. Несмеянова АН СССР, Москва

Поступило 3 I 1984

Установлено, что при катализируемой основанием диеновой конденсации солей дналкил (3-фенилпропаргил) (3- α -нафтилпропаргил) аммоння в роли потенциального дненового фрагмента выступает в основном 3-фенилпропаргильная группа, приводя к образованию солей 2,2-дмалкил-4- α -нафтилбенз [1] изоиндолиния. Выход второго возможного продукта циклизации с участием в роли диенового фрагмента 3- α -нафтилпропартильной группы незначителен. Структура основного продукта циклизации Па расшифрована методом тяжелого атома и уточнена методом наименьших квадратов последовательно в изотропном и анизотропном приближении для неводородных атомов и с учетом вклада в $F_{\text{вым}}$ атомов Н органического катиона. Окон гательное значение R=0.062 ($R_{\infty}=0.071$) по 1574 отражения с 1 > 2σ . Кристаллы Па моноклинные, $\sigma=10.253$ (2). $\sigma=10.253$ (2). $\sigma=10.253$ (3). $\sigma=10.253$ (6). $\sigma=10.253$ (7) Å; $\sigma=10.253$ (1)°, $\sigma=10.253$ (2). $\sigma=10.253$ (3). $\sigma=10.253$ (6). $\sigma=10.253$ (7) Å; $\sigma=10.253$ (8). $\sigma=10.253$ (9). $\sigma=10.253$ (10°) $\sigma=10.253$

Рис. 2, табл. 4, библ. ссылок 2.

Ранее было показано, что при одновременном присутствии 3-алкенилпропаргильной и 3-фенилпропаргильной групп в молекулах аммониевых солей в качестве диенового фрагмента в реажцию циклизации в основном вступает последняя [1].

В настоящей работе показано, что при циклизации солей Іа, б в качестве диенового компонента в основном выступает 3-фенилпропаргильная группа, при этом образуются циклические продукты ІІа, б с выходами 64 и 73%, соответственно. Выходы продуктов циклизации ІІІ а, б, полученных с участием 3-α-нафтилпропаргильной группы в роли диенового компонента, составляют лишь 5—7%.

Структура основных продуктов на примере диметильного аналога Па доказана методом рентгеноструктурного анализа, а ПП а, 6—ИК и УФ спектральными методами. Данные, относящиеся к исходным солям и продуктам их циклизации, приведены в табл. 1. Следует отметить, что исжодные соли Га, б плохо растворяются в воде, поэтому циклизацию ссуществляли в водно-спиртовом растворе в присутствии 0,4 г-экв щелочи на моль взятой соли. Соль Га циклизуется при нагревании (90—92°) в течение 2—3 ч. Циклизация соли Гб протекает с саморазогреванием, однако для полного осуществления реакции требуется нагревание в течение 1—1,5 ч.

$$R_{2}\overset{\leftarrow}{N} CH_{2}C \equiv C - CH_{2}CH_{2}CH_{2} \qquad IIa, 6$$

$$R_{2}\overset{\leftarrow}{N} CH_{2}C \equiv C - CH_{2}CH_{$$

Исходные соли получены взаимодействием диалкил (3-а-нафтилпропаргил) аминов с бромистым 3-фенилпропаргилом в среде ацетонитрила. Амины получены по реакции Манниха. Амины, соли I а, б и продукты их циклизации описываются впервые. Данные, относящиеся к аминам, приведены в табл. 2.

Экспериментальная часть и расшифровка структуры

Кристаллы IIа моноклинные, a=10,253 (2), b=33,861 (6), c=6,6222 (7) Å, $\beta=92,51$ (1)° V=2297 (1) ų; пространственная группа $C_{\rm c}$, $Z=4\left[C_{\rm s}H_{\rm 2}N\right]^{+}{\rm Br}^{-}$. $C_{\rm 2}H_{\rm 5}{\rm OH}$, $d_{\rm BM4}=1,307$ г/см³,

Параметры элементарной ячейки и интенсивности 1738 независимых отражений измерены при 20° на автоматическом четырежкружном дифрактометре "Хилгер-Уоттс" ($\lambda_{\text{Cu Ka}}$, графитовый монохроматор, $\theta/2\theta$ —сканирование, $\theta_{\text{max}} = 65^{\circ}$), Структура расшифрована методом тяжелого атома и уточнена методом наименьших квадратов последовательно в изотрольном и анизотропном приближении для неводородных атомов и с учетом вклада в $F_{\text{выц}}$ атомов Н органического катиона. Все расчеты выполнены на ЭВМ «Эклипс S/200» по программам ЕХТІ, модифицированным Яновским и Герром (ИНЭОС АН СССР). Координаты неводородных атомов и их эквивалентные изотропные температурные параметры приведены в табл. 3, геометрия катиона IIa с нумерацией атомов показана на рис. 1. Длины связей и валентные углы органического катиона IIa и сольватной молекулы этанола приведены в табл. 4.

Обсуждение результатов

Конформация органического катиона не является неожиданной. Взаимный поворот его бинафтильных частей составляет 99,6° от плоской цис-конформации. Атом N выходит из плоскости остальных атомов пятичленного цикла на 0,46(1) Å. Таким образом, этот цикл принимает конформацию конверта с углом перегиба 31,1°. В кристалле можно выде-

Исходная соль	найде вычисл	но ' %	ИКС, см ⁻¹	
исходная соль	Br	N	(УФС, нм)	
CH ₃ C ≡ CC ₈ H ₅ (H ₃ C) ₂ N CH ₃ C ≡ C Ia гигроскоп.	19,52 19,80	3,54 3,47	760, 780, 880, 1510, 1570, 1590, 1820, 1890, 2240, 3020 (205, 225, 300)	
H ₅ C ₂) ₂ N CH ₂ C≡CC ₆ H ₅ CH ₂ C≡C-	18,81	3,46	730, 750, 770, 1590, 1720, 2235 (210, 230, 290, 300, 310)	

лить области, где превалирует ионное взаимодействие молекул (в данном случае нонов), сопровождающееся образованием Н-связей, и области, где взаимодействие имеет преимущественно гидрофобный характер. На рис. 2 показано, что аммонийные атомы N, анионы Вг и молекулы этанола локализованы в слоях, прилегающих к плоскостям n, а углеводородные части молекул—в слоях, прилегающих к плоскостям c. Окружение атомов N в гидрофильных слоях, помимо четырех ковалентно свя-

Продукт циклизации (т. пл., °C)	%	Найдено, %		ИКС, <i>см</i> ^{—1}	
	Выход,	Br	N	(УФС, нм, ε)	
(H ₃ C) ₂ N CH ₂ CH ₂ CH ₂ IIa (182—183)	64	19,60	3,78	740, 785, 850, 890, 1510, 1590, 3020, 3060 (220, 290)	
(H ₃ C) ₂ N CH ₂ CH ₂ IIIa (259-261)	5	19,54	3,67	720, 760, 870, 1500, 1570, 1590 255 (75090), 300 (18000) 332 (590), 345 (490).	
(H ₅ C ₂) ₂ N CH ₂ CH ₂ il6 (157-159)	73	18,19	3,15	730, 770, 850, 1500, 1580 (220, 262, 275, 280)	
(H ₅ C ₂) ₂ N CH ₂ CH ₂ CH ₂ III6 (238—239)	7	18,68	3,42	750, 800, 870, 1510, 1570, 3030, 3050 218 (85000), 260 (96000) 300 (28000), 340 (500), 350 (370)	

занных атомов углерода, дополняется тремя анионами Вг, центрирующими три грани координационного тетраэдра N (углы BrNBr 109,0 117,9 (2)°), При этом из-за экранирования атома азота атомами С расстояния N⁺ Вг превышают сумму соответствующих вандерваальсовых радиусов (3,45 Å [2]) и составляют 4,049—4,171 (9) Å. Четвертая грань координационного тетраэдра N экранирована от ионов Вг нафтильным ядром той же молекулы. Окружение анионов

Br тремя атомами N также близко к тетраэдрическому (углы NBrN 107,5—112,1 (2)°). Четвертое положение в координационном тетраэдре занято сольватной молекулой этанола, вероятно, образующей с ним H-связь Br ... H—O (расстояние Br ... O (S) 3,26 (1) Å).

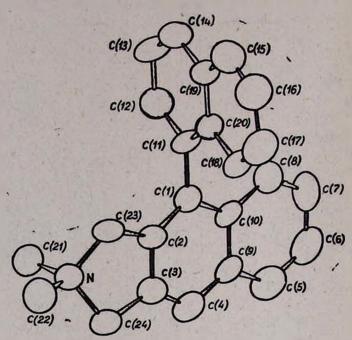


Рис. 1.

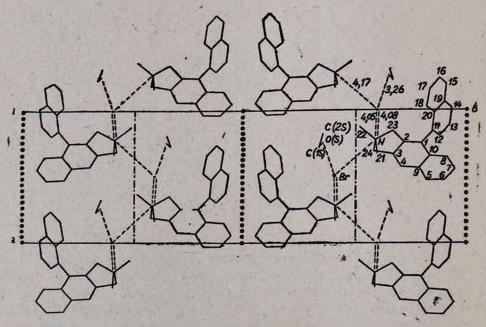


Рис. 2.

The Charles of the Land

Таблица 2

	йдено ислено	%	MV anguage au=1	Т. пл.
С	н	N	ИК спектр, <i>см</i> ⁻¹	пикрата, °С
84,91 86,12	7,88	6,75	720, 780, 1500, 1510, 1600, 2225, 3070, 3080	178-179
82,39 81,85	7,78 8,01	5,65	750, 780, 1500, 1580, 3030, 3090	145—146

Координаты (×104) неводородных атомов и их эквивалентные изотропные температурные параметры

$$B_{uso} = \frac{1}{3} \sum_{i,j} B_{ij} (\vec{a}_i \, \vec{a}_j) \, \vec{a}_i \, \vec{a}_j \, (A^2)$$

Атом	x	у	2	В	
Br	1/2	7004,3 (3)	0	5,79 (3)	
N	2292 (9)	7922 (2)	123 (14)	4,5 (2)	
C(1)	2507 (9)	8961 (3)	1603 (15)	3,8 (3)	
C (2)	2478 (10)	8563 (3)	1511 (16)	3,8 (3)	
C (3)	3349 (11)	8325 (3)	2647 (19)	4,2 (3)	
C (4)	4302 (10)	8484 (4)	3910 (16)	4,9 (3)	
C (5)	5270 (10)	9080 (4)	5488 (20)	5,4 (4)	
C (6)	5321 (11)	9481 (4)	5709 (18)	5,6 (4)	
C (7)	4468 (11)	9722 (4)	4533 (20)	5,4 (3)	
C (8)	3543 (10)	9551 (3)	3256 (17)	4,4 (3)	
C (9)	4358 (10)	8896 (3)	4165 (15)	3,8 (3)	
C (10)	3472 (9)	9144 (3)	2977 (14)	3,6 (2)	
C (11)	1598 (9)	9210 (3)	340 (14)	3,4 (2)	
C (12)	1993 (11)	9369 (4)	—1479 (21)	4,8 (3)	
C (13)	1168 (12)	9594 (3)	—2736 (18)	5,1 (3)	
C (14)	—97 (11)	9647 (3)	—2221 (18)	4,8 (3)	
C (15)	—1887 (10)	9542 (3)	88 (22)	5,4 (4)	
C (16)	—2356 (12)	9382 (4)	1741 (25)	5,8 (4)	
C (17)	—1492 (12)	9157 (4)	3107 (21)	5,8 (4)	
C(18)	—210 (10)	9097 (3)	2642 (16)	4,2 (3)	
C (19)	—577 (10)	9489 (3)	—430 (17)	3,8 (3)	
C (20)	272 (8)	9261 (3)	856 (15)	3,5 (2)	
C (21)	3196 (13)	7942 (4)	—1573 (20)	5,6 (4)	
C (22)	1370 (13)	7575 (4)	-109 (22)	6,4(4)	
C (23)	1557 (11)	8309 (3)	262 (18)	4,4 (3)	
C (24)	3122 (12)	7895 (3)	2119 (19)	5,2 (3)	
O (S)*	2325 (13)	6697 (4)	1976 (21)	9,8 (4)	
C (1S)*	2800 (24)	6656 (8)	4057 (34)	11,6 (9)	
C (2S)*	1851 (27)	6743 (9)	5447 (47)	14 (1)	

^{*} Атомы сольватной молекулы этанола.

Циклизация бромистого диметил (3-фенилпропаргил) (3-α-нафтилпропаргил) аммония (Ia). К раствору 4 г (0,01 моля) соли Ia в 6 мл воды и 3,5 мл этанола прибавляют 2 мл 2,1 н раствора едкого кали. Реакционную смесь нагревают при 90—92° 2—3 ч, затем подкисляют бромистоводородной кислотой и под низким давлением отгоняют растворитель
досуха. При нагревании абс. этанолом экстрагируют органическую соль.
Затем из охлажденного спиртового раствора фильтрованием выделяют
2,6 г (64%) бромистого 2,2-диметил-4-α-нафтилбенз[f] изоиндолиния

(IIa). Из маточного раствора эфирным осаждением выделяют 0,2 г (5%) бромистого 2,2-диметил-4-фенилнафт[f]изоиндолиния (IIIa).

Таблица 4 Длины связей d (Å) и валентиые углы ∞ (град.)

Циклизация бромистого диэтил (3-фенилпропаргил) (3-α-нафтилпропаргил) аммония (16). К раствору 1,8 г (0,0041 моля) соли 16 в 2 мл воды и 1 мл этанола прибавляют 1 мл 2,1 м раствора едкого кали. Температура реакционной смеси поднимается до 65°. Затем реакционную смесь нагревают при 90—92° 1—1,5 ч для обеспечения полноты реакции. Фильтрованием выделяют 1,3 г (73%) бромистого 2,2-диэтил-4-α-нафтилбенз[f] изоиндолиния (II6). После стояния маточного раствора выделяют 0,13 г (7%) бромистого 2,2-диэтил-4-фенилнафт[f] изоиндолиния (III6).

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԱՄԻՆՆԵՐԻ ԵՎ ԱՄՈՆԻՈՒՄԱՅԻՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ՔՆԱԳԱՎԱՌՈՒՄ

CLXXXIII. ԴԻԱԼԿԻԼ (3-ՖԵՆԻԼՊՐՈՊԱՐԳԻԼ) (3-«-ՆԱՖԹԻԼՊՐՈՊԱՐԳԻԼ) ԱՄՈՆԻՈՒՄԱՑԻՆ ԱՂԵՐԻ ՀԻՄՔՈՎ ԿԱՏԱԼԻՋՎՈՂ ՆԵՐՄՈԼԵԿՈՒԼԱՑԻՆ ՑԻԿԼԱՑՈՒՄ

Ա. թ. ԻԱԲԱՅԱՆ, Է. Հ. ՉՈՒԽԱՋՑԱՆ, Ք. Գ. ՇԱԽԱՏՈՒՆԻ, Ս. Վ. ԼԻՆԴԵՄԱՆ և Ցու. Տ. ՍՏՐՈՒՉԿՈՎ

Հաստատված է, որ դիալկիը(3-ֆենիլպրոպարդիլ) (3-α-նաֆթիլպրոպարգիլ)ամոնիումային աղերի հիմքով կատալիզվող դիենային կոնդենսացման ռեակցիայում որպես պոտենցիալ դիենային ֆրագմենտ հիմնականում մաս-նակցում է 3-ֆենիլպրոպարդիլ խումբը, առաջացնելով 2,2-դիալկիլ-4-α-նաֆ-թիլբենզ [[] իզոինդոլինիումային աղեր։ Երկրորդ հնարավոր արդասիքի ելքն աննշան է։ Հիմնական միացության կառուցվածքն ապացուցվել է ռենտդենա-կառուցվածքային անալիզի եղանակով։

INVESTIGATIONS IN THE FIELD OF AMINES AND AMMONIUM COMPOUNDS

CLXXXIII. BASE-CATALYZED INTRAMOLECULAR CYCLIZATION OF DIALKYL-(3-PHENYLPROPARGYL)(3-a-NAPHTYLPROPARGYL)AMMONIUM SALTS

A. T. BABAYAN, E. O. CHUKHAJIAN, C. G. SHAKHATUNY S, V. LINDEMAN and Yu. T. STRUCHKOV

It has been shown that in the case of base-catalyzed dienic condensation reactions of dialkyi(3-phenylpropargyl)(3- α -naphthylpropargyl)-ammonium salts mainly the 3-phenylpropargylic group participates in the role of the dienic fragment forming 2,2-dialkyl-4- α -naphtylbenz[f]isolndo-linium salts. The yield of the second possible product is insignificant.

The structure of the main product has been confirmed by a method of X-ray structural analysis.

ЛИТЕРАТУРА

- 1. А. Т. Бабаян, Э. О. Чухаджян, Эл. О. Чухаджян, Г. Л. Габриелян, Арм. хим. ж., 29, 173 (1976).
- 2. Л. Полинг, Природа химической связи, М.—Л., 1947.