Армянский химический журнал, т. 37, № 4, стр. 207—213 (1984 г.)

ОБЩАЯ И ФИЗИЧЕСКАЯ ХИМИЯ

УДК 541.124.7: 518.5

КИНЕТИЧЕСКИЕ СВОИСТВА МОДЕЛЕЙ ЦЕПНЫХ РАЗВЕТВЛЕННЫХ РЕАКЦИЙ, ВКЛЮЧАЮЩИХ РАЗВЕТВЛЕНИЯ РАЗЛИЧНЫХ ТИПОВ

А. А. ГРИГОРЯН и А. А. МАНТАШЯН

Институт химической физики АН Армянской ССР, Ереван

Поступило 17 VI 1983

Методом математического моделирования с помощью ЭВМ прознализированы модели цепных разветвленных реакций, включающие различные типы реакций разветвления цепей. Показано различие кинстических свойств моделей в зависимости от типа реакции разветвления.

Рис. 5, табл. 1, библ. ссылок 7.

Принято считать, что в процессах окисления углеводородов вырожденное разветвление происходит с участием молекулярного промежуточного продукта [1] по реакции

$$RCHO + O_2 \longrightarrow RCO + HO_2$$
(1)

или

$$ROOH \longrightarrow RO + OH$$
(2)

Для реакций разветвления (1) или (2) (назовем их разветвлениями I-го типа) процесс окисления углеводородов с учетом цепного расходования разветвляющего продукта условно представим в следующем виде:

 $\begin{array}{ccc} A \xrightarrow{x} & Y_1 \xrightarrow{x} & B \\ & & \downarrow (A) \\ & & & 2x \end{array} \tag{3}$

А--исходные реагенты, х-свободные радикалы. У₁-промежуточный разветвляющий молекулярный продукт (альдегид или гидроперекись), В-конечные продукты реажции.

Из теоретического анализа, проведенного Ениколопяном [2] с применением метода квазистационарных концентраций, следует, что подобная модель может описать экспоненциальное нарастание окорости с выгоранием исходного реагента менее 50% при достижении максимальной скорости.

В литературе известен также механизм, предложенный Льюисом и Эльбе [3], в котором разветвление происходит в реакции свободного радикала с промежуточным молекулярным продуктом. Близкую по сути реакцию разветвления предложили Воеводский и Веденеев [4]:

$$RO_2 + R'CHO \longrightarrow RO + OH + R'CO$$
 (4)

207

Анализ с помощью приближенных методов решения дифференциальных уравнений показал, что в этом случае можно объяснить длительную «задержку» реакции и последующее резкое нарастание окорости, наблюдаемые при окислении этана [4].

Согласно [5], возможна и несколько иная реакция разветвления, осуществляемая в акте распада радикала R'CO₃:

- a) $RO_2 + R'CHO \longrightarrow RO_2H + R'CO$
- 6) $R'CO + O_2 \longrightarrow R'CO_3$
- B) $R'CO_3 \longrightarrow R' + CO_3 + O$

Разветвление может осуществляться также путем распада надкислоты R'CO₃H [6]:

a)
$$R'CO_3 + RH \longrightarrow R'CO_3H + \dot{R}$$

6) $R'CO_3H \longrightarrow R'CO_2 + OH$ (6)
6') $R' + CO_3 + \dot{O}H$

x

(5)

(7)

(8)

Реакции разветвления (4.-6) имеют общую черту: размножение активных центров происходит либо непооредственно в акте взаимодействия ведущего цепь радикала с промежуточным молекулярным продуктом (4), либо в результате последующего распада образующегося вследствие этой реакции радикала (5) чли надкислоты (6). В общем случае модель окисления угловодородов с рассматриваемым типом разветвления (назовем его разветвлением II-го типа) упрощенно представим в виде:

где Y₃ — надкислота или радикал.

Отметим, что при разветвлении II-го типа в отличие от I-го имеется «нелинейность» в цепи образования разветвляющей частицы Y₂, связанная с взаимодействием между промежуточными частицами: Y₂—со оравнительно большим и x—малым временем жизни.

В работе [7] проанализирована модель цепной разветвленной реакции, включающая «двойное разветвление», которую можно упрощенно представить так:

$$A \xrightarrow{x} Y_1 \xrightarrow{A} nx$$

$$\downarrow x \qquad \downarrow x \qquad \uparrow$$

$$\downarrow x \qquad \uparrow$$

Как было показано в [7], модель типа (8) позволяет описать как плавные S-образные кинстические кривые расхода исходных реагентов с выгоранием на максимуме скорости менее 50%, так и резкие, с выгоранием более 50%, а также переход от одного типа кривых к другому.

В настоящей работе проведен более подробный сопоставительный анализ моделей, включающих каналы развития цепного процеоса с разветвлением І-го или ІІ-го типа путем численного янтеприрования с помощью ЭВМ системы дифференциальных уравнений, описывающих процесс окисления в изотермических условиях при начальных уоловиях: $[RH]_0 = [O_2]_0 = 3.9 \cdot 10^{-6}$ моль/см³. Методика проведения анализа, схемы реакций, а также выбор констант скоростей отдельных элементарных стадий описаны в [7].

Nè	Реакции	A	E
1	$RH + O_2 \longrightarrow \dot{R} + H\dot{O}_2$	6 - 1013	210*
2	$R + O_2 \xrightarrow{a} RO_2$	6·10 ¹⁰	0
3	RO ₂ → R'CHO + OH	1013	151
4	$\dot{O}H + RH \longrightarrow \ddot{\kappa} + H_2O$	1012	21
5	$R'CHO + O_2 \longrightarrow R'CO + HO_3$	6 · 1012	163 °
6	$R'CO \div O_2 \xrightarrow{a} R'CO_3$	6.1010	0
7	$R'C\dot{O}_3 + RH \longrightarrow R'CO_3H + R$	1011	33,5
8	$R'CO_3H \longrightarrow R'CO_2 + OH$	1023	151*
9	$R'CO_2 + RH \longrightarrow R'CO_2H + R$	6 - 1022	42
10	$H\dot{O}_2 + RH \longrightarrow \dot{R} + H_2O_2$	1011	71
11	$R'CO_3 + R'CHO \longrightarrow R'CO_3H + R'CO$	1011	33,5
12	$R'CO_2 + R'CHO \longrightarrow R'CO + R'CO_2H$	6-1012	42
13	$\dot{O}H + R'CHO \longrightarrow R'\dot{C}O + H_2O$	6.1012	23
14	НО, обрыв	$K_{14} = 4, 3 \cdot 10^{-2}$	
15	R′CO₃ —→ обрыв	$K_{15} = 6, 4 \cdot 10^{-2^{\circ}}$	
16	О́Н	$K_{16} = 1, 8 \cdot 10^{-1}$	
17	RO₂ → обрыв	$K_{17} = 1, 8 \cdot 01^{-2^{\circ}}$	
-18	R'CHO → нецепной расход	$K_{18} = 4 \cdot 6 \cdot 10^{-3^{\circ}}$	
19	R'CO ₃ H → нецепной расход	$K_{19} = 5, 3 \cdot 10^{-2^{\circ}}$	

A — предэкспонент константы скорости, c^{-1} для моно- и $cm^3 \cdot monb^{-1} \cdot c^{-1}$ для. бимолскулярных реакций, E — энергия активации, $\kappa Д \mathcal{M} \mathcal{M} on b$.

Константы скорости, отмеченные знаком (*), варьировались.

Примечания: а) Модель I (с реакцией разветвления I-го типа): стадии 1—7, 10, 11, 13—18.

б) Модель II (с реакцией разветвления II-го типа): стадии 1-4, 6-19.

Таблица

Схема реакции, приведенная в таблице, включает как модель I с реакцией разветвления І-го типа (стадии 1—7, 10, 11, 13—18), так и модель II с реакцией разветвления II-го типа (стадии 1—4, 6—19).

Результаты анализа

Типичные кинетические кривые выгорания $\eta(t)$ углеводорода для модели I (табл., а), полученные при вариации константы скорости реакции разветвления K₅, приведсны на рис. I. Они представляют собон плавные S-образные кривые с выгоранием при достижении максимальной скорости $\eta_m < 50\%$, что находится в согласии с данными [2]. Вариация K₅ проводилась как для значений константы скорости гомогенной реакции разветвления (кр. 1, 2), так и для больших значений, соответствующих гетерогенной реакции разветвления (кр. 3—5). Как видно из рис. 1, увеличение K₅ в широком диапазоне (от 4,5·10⁻² см³ моль⁻¹. ·c⁻¹для кр. 1 до 80,6 см³ моль⁻¹ ·c⁻¹ для кр. 5) приводит к увеличению скорости процесса и соответствующему уменьшению времени достижения максимальной скорости. При этом и других значениях констант окоростей отдельных элементарных стадий кинетические кривые имеют аналогичный вид.

Иной вид имеют кинетические кривые выгорания углеводорода для модели II (табл. б), приведенные на рис. 2, с характерным временем «задержки» и последующим резким нарастанием скорости вплоть до полного выгорания одного из реагентов. Максимум скорости наступает при выгорании более 50%. С уменьшением константы скорости реакции развствления K₈ уменьшается максимальная скорость и увеличивается время ее достижения (кр. 1—4). При дальнейшем уменьшении K₈ реакция идет без автоускорения (кр. 5).

Значения η_m , соответствующие данным рис. 1 и 2, приведены на рис. 3. Для разветвления I-го типа наблюдается плавная зависимость от K_s и $\eta_m < 50\%$ (кр. 1—1). Для разветвления II-го типа соответствующая зависимость от K_s носит экстремальный характер (кр. II—1). Незначительные (в пересчете на энергию активации не превышающие 4 кДж/ /моль) варнации K_s приводят к изменению значений η_m от нескольких процентов до значений, превышающих 60%. Как показали расчеты, значения K_s , при которых происходит переход через «пограничную» область (заштрихована) от одного типа кинетических кривых к другому, существенно зависят от остальных параметров модели.

Можно было ожидать [5], что усиление расхода (например, по реакции (15) обрыва цепи) активных центров, приводящих к образованию разветвляющего продукта, приведет к уменьшению резкости кинетических кривых выгорания. На рис. 4 приведены значения η_m , полученные при вариации константами свкоростей реакций обрыва цепи K_{15} и нецепного расхода промежуточного продукта K_{18} . Видно, что как и при вариации K_8 (ср. с рис. 3), имеется область эначений K_{15} пде $\eta_m > 50\%$. область эначений, в которой реакция практически не идет (соответствующие кр. $\eta(t)$ приведены на рис. 2), а также «пограничная» область (заштрихована), где иезначительные изменения K_{15} приводят к качестненному изменению режима протекания реакции. Аналогичная «критическая» зависимость наблюдалась и при варнации К₁₈ (кр. II—3). Для сравнения на том же рис. 4 приведена кривая I—1, полученная при аналогичной вариации для модели I, имеющая плавный вид. Более подробный анализ в «пограничной» области показал, что если и можно специальным подбором констант скоростей отдельных элементарных стадий получить для модели II кинетическую кривую выгорания с η_m около 50%, то она, тем не мечее, имеет либо резкий, несимметричный вид, либо процесс идет без автоускорения, причем в обоих случаях наблюдается рассмотренная выше «критичность» по параметрам.

Рис. 2. Кинетические кривые выгорания углеводорода $\eta(t)$, полученные при вариации константой скорости реакции разветвления (8) ІІ-го типа (E_8 , $\kappa \mathcal{A} \mathscr{H}$ моль): 1—151, 2—163, 3—172, 4—178, 5—180. Кривые получены при $\mathcal{E}_1 = 155 \kappa \mathcal{A} \mathscr{H}$ моль.

Вариация константой скорости реакции зарождения K_1 в пределах от 4,7 · 10⁻⁶ до 0,2 см² · моль⁻¹ · с⁻¹ (что соответствует вариации E_1 в пределах от 210 до 155 кДж/моль) приводчт к увеличению максимальной скорости выгорания и уменьшению времени ее достижения.

Как следует из вышеприведенного анализа, вариация константами скоростей отдельных элементарных стадий по-разному влияет на кинетику процесса с тем или иным типом реакции разветвления. Изменение характера кинетической кривой выгорания для модели II (рис. 2 и 3) происходит при изменении K_8 менее чем в 1,5 раза, что соответствует уменьшению температуры на величину $\Delta T < 7K$. На рис. 5 приведены кичетические кривые выгорания углеводорода, полученные при различных температурах в интервале 600—650 K, а соответствующие значения η_m приведены на рис. 3 (кр. II—2). Видно, что с увеличением температуры в интервале $\Delta T < 5K$ происходит изменение характера кинетической кривой выгорания для модели II (кр. II—1, 2 на рис. 5). При дальнейшем повышении температуры происходит увеличение максимальной скорости и уменьшение времени ее достижения, при этом выгорания остаютоя зеведомо больше 50%. Для сравнения приводятся данные аналогичных расчетов для модели I. Как видим, влияние температуры на кинетнку процесса различно в зависимости от типа модели и соответствует влиянию константы скорости соответствующей реакции разветвления.

Рис. 3. Выгорание углеводорода η_m на максимуме скорости при вариации: константой скорости K_p реакции, разветвления І-го типа — кр. І—1 ($E_1=155 \ \kappa \mathcal{A} \ \mathcal{M} \ \mathcal{M}$ моль): константой скорости K_8 реакции разветвления ІІ-го типа — кр. ІІ—1 ($E_1=155 \ \kappa \mathcal{A} \ \mathcal{M} \ \mathcal{M}$

Рис. 4, Выгорание углеволорода η_m на максимуме скорости при варнации: константой скорости K_{15} реакции обрыва цепи для модели II: кр. II — I ($E_1 = 197$, $E_8 = 151 \ \kappa \ \mathcal{M} \ \mathcal{M} \ OAb, K_{15} = 0$), кр. II — 2 ($E_1 = 197$, $E_8 = 184 \ \kappa \ \mathcal{M} \ \mathcal{M} \ Ach$, константой скорости K_{18} гибели промежуточного продукта для модели I: кр. I — I ($E_1 = 155$, $E_5 = 126 \ \kappa \ \mathcal{M} \ \mathcal{M} \ Ach$); для модели II: кр. II — 3 ($E_1 = 197$, $E_8 = 184 \ \kappa \ \mathcal{M} \ \mathcal{M} \ Ach$).

S.

Таким образом, совокупность полученных данных показывает, что модель, включающая реакцию разветвления І-го типа, может описать кинетику выгорания исходного реагента, имеющую плавный характер с выгоранием на максимуме скорости до 50%. В отличие от нее модель, включающая реакцию разветвления II-го типа, может описать, как правило, кинетику процесса с ярко выраженным временем «задержки» с последующим резким нарастанием скорости до выгорания более 50% (вплоть до полного выгорания одного из реагентов). Для подобной модели, в отличие от модели с разветвлением І-го типа, существуют «критические» значения параметров, незначительные изменения которых приводят к изменению режима протекания реакции.

Выражаем благодарность В. И. Веденееву за полезные обсуждения.

ՏԱՐԲԵՐ ՏԵՍԱԿԻ ՃՅՈՒՂԱՎՈՐՈՒՄՆԵՐ ԸՆԴԳՐԿՈՂ ՇՂ**ԲԱՅԱԿԱՆ** ՌԵԱԿՑԻԱՆԵՐԻ ՄՈԴԵԼՆԵՐԻ ԿԻՆԵՏԻԿԱԿԱՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ

Ա. Ա. ԳՐԻԳՈՐՅԱՆ Լ'Ա. Հ. ՄԱՆԹԱՇՑԱՆ

Մաթեմատիկական մոդելավորման մեթոդով, օգտագործելով ԷՀՄ-ը, ածխաջրածինների օքսիդացման ռեակցիաների օրինակի հիման վրա անալիզի է ենթարկված տարբեր տեսակի ճյուղավորումներ ընդգրկող շղթայական ռեակցիաներ։ Յույց է տրված, որ մոդելավորման կինետիկական հատկությունները կախված են տարբեր տեսակի ճյուղավորումներից։

KINETIC FEATURES OF CHAIN REACTION MODELS INCLUDING DIFFERENT TYPES OF BRANCHING

A. A. GRIGORIAN and A. A. MANTASHIAN

Chain reaction models including different types of branching have been analysed by a mathematical modelling using a computer. It has been shown that the kinetic features of these models depend upon the types of branching.

ЛИТЕРАТУРА

- 1. Н. Н. Семенов, О некоторых проблемах кинетики и реакционной способности, Изд. АН СССР, 1958 г.
- 2. Н. С. Екиколопян, ЖФХ, 30, 769 (1956).
- 3. B. Lewis, G. v. Elbe, J. Am. Chem. Soc., 59, 970 (1937).
- 4. В. В. Воеводский, В. И. Всденеев, ДАН СССР, 106, 679 (1956).
- 5. С. С. Поляк, В. Я. Штерн. ДАН СССР, 192, 1090 (1970).
- 6. В. Я. Штерн, Механизм окисления углеводородов в газовой фазе, Изд. АН СССР, 1960 г.
- 7. А. А. Григорян, А. А. Манташян, Арм. хим. ж., 87, 137 (1984).