ЛИТЕРАТУРА

. Th. Herbertz, Chem. Ber., 85, 475 (1952).

- 2. М. Ф. Шостаковский, А. В. Богданова, Химия диацетиленя, М., 1971, стр. 21.
- 3. М. Ф. Шостаковский, А. Х. Хоменко, Изв. АН СССР, 1960 1098.
- 4. Г. М. Мкрян, П. А. Папазян, Э. С. Восканян, Н. С. Арутюнян, Арм. хнм. ж., 18. 481 (1965).
- 5 А. Е. Калайджян, К. А. Кургинян, И. М. Гостомян, Г. А. Чухаджян, Арм. хим. ж., 33, 845 (1980).

Армянский химический журнал, т. 36, № 6, стр. 412—413 (1983 г.)

КРАТКИЕ СООБЩЕНИЯ

УДК 542.941.942.543.272.72:661.7321.661.8.

ФОТОХИМИЧЕСКОЕ ВОССТАНОВЛЕНИЕ НЕПРЕДЕЛЬНЫХ СОЕДИНЕНИИ МУРАВЬИНОЙ КИСЛОТОЙ В ВОДЕ В ПРИСУТСТВИИ ВОДОРАСТВОРИМОГО КОМПЛЕКСА РОДИЯ. I

Г. А. ЧУХАДЖЯН, В. П. КУКОЛЕВ, Л. Н. МЕЛКОНЯН, В. А. МАТОСЯН и Н. А. БАЛЮШИНА

Научно-производственное объединение «Наирит», Ереван Поступило 24 II 1982

В ранее опубликованных работах нами впервые было показано, что сульфированные фосфиновые комплексы переходных металлов катализируют восстановление непредельных соединений в воде под действием муравыной кислоты или ее соли как органических доноров водорода [1, 2]. В ряде случаев имеет место почти полное восстановление непредельных субстратов, однако процесс осуществляется в довольно жестких условиях (80—100°).

Известно, что облучение УФ светом облегчает ряд органических реакций и, в частности, окислительно-восстановительного характера. В продолжение рансе начатых работ представлялось интересным исследовать возможность каталитического восстановления непредельных соединений муравьиной кислотой в воде в более мягких условиях под действием УФ облучения.

В жачестве водорастворимого катализатора иопользован комплекс (dpin)₃RhCl·4H₂O [3]. Результаты проведенных экспериментов приведены в таблице. Там же представлены данные по восстановлению этих соединений без облучения.

Полученные данные подтвердили возможность восстановления различных соединений в водной среде в присутствии металлоорганического комплекса в мяпких условиях под действием УФ облучения. Следует отметить, что реакция имеет селективный характер. В процессе восстановления затрагивается только ненасыщенняя С=С связь, в то время как карбонильная группа восстановлению не подвергается. Реакция при

комнатной температуре в ряде случаев приводит к более полному восстановлению субстрата, чем в опытах без облучения при 80°.

Восстановление непредельных соединений, инициируемое УФ облучением

Восстанав- ливаемый субстрат	Условия реакции	Время, ч	T-pa, °C	Продукт восстанов- ления	Выход продукта восстановления в различных средах, %		
					нсоон	HCOONa	HCOON _a
1-Гептен	без обл. с обл.	1,5 12 20	80 25 25	гептан гептан гептан	10 10 15	31 67 87	20 50 60
1-Гексен	без обл. с обл.	1.5 20	80 25	гексан гексан	10 40	_	_
Кротоновый альдегид	без обл.	1,5	80	маслян. альдегид	30	_	-
	с обл.	20	25	маслян. альдегид	50	18 - 3	-

Контрольными опытами показано, что облучение реакционной смеси в отсутствие катализатора не приводит к восстановлению непредельного соединения. В отсутствие муравьиной кислоты УФ облучение также не инициирует восстановление ненасыщенного субстрата, и, таким образом, вода не является донором водорода в условиях реакции.

Нами установлено, что при использовании в воде таких органических доноров водорода, как этанол и изопропиловый спирт под действием УФ облучения, непредельные органические соединения не восстанавливаются как в приведенных условиях, так и при нагревании каталитической системы.

Экспериментальная часть

- а) В кварцевую пробирку помещали 0,05 г катализатора, муравьиную кислоту (формиат натрия) и непредельный субстрат в молярном соотношении 1:100:20 и 5 мл дистиллированной воды.
- б) В кварцевую пробирку загружали 0,05 г катализатора, муравьиную кислоту, формиат натрия и непредельный субстрат в молярном соотношении 1:50:50:20 и 5 мл дистиллированной воды. Процесс осуществлялся при 25—30°. Облучение проводилось нефильтрованным светом лампы ПРК-4. По окончании реакции смесь анализировали методом газо-жидкостной хроматографии с использованием внутреннего стандарта.

ЛИТЕРАТУРА

^{1.} Г. А. Чухаджян, Н. А. Балюшина, В. П. Куколев, Арм. хим. ж., 35, 445 (1982). 2. В. П. Куколев, Н. А. Балюшина, Г. А. Чухаджян, Арм. хим. ж., 35, 688 (1982).

^{3.} A. F. Borowski, D. J. Cole-Hamilton, G. Wilkinson, Nouveau J. Chemie, 2 (No. 2), 13: (1578).