КРАТКИЕ СООБЩЕНИЯ

УДК 547.812

ИССЛЕДОВАНИЯ В ОБЛАСТИ НЕНАСЫЩЕННЫХ ЛАКТОНОВ

LXXX. СИНТЕЗ И СВОИСТВА 3-ЦИАНО-4,6,6-ТРИМЕТИЛ-5,6-ДИГИДРО-2-ПИРОНА

А. А. АВЕТИСЯН, Б. К. КАСПАРЯН, А. Н. ДЖАНДЖАПАНЯН В М. Т. ДАНГЯН

Ереванский государствечный университет

Поступило 16 Х 1981

Ранее было показано, что соединения, содержащие активные метиленовые пруппы, с α-кетоспиртами образуют функционально замещенные ненасыщенные лактоны [1—4].

В настоящей работе изучено взаимодействие циануксусного эфира с днацетоновым спиртом. Показано, что наилучшие выходы получаются в присутствии безводного ацетата аммония без растворителя при молярном соотношении компонентов—диацетоновый спирт, цианукоусный эфир, ацетат аммония—1:1:0,5 и нагревании до 120—130° в течение 30—35 ч. При этом образуется 3-циано-4,6,6-триметил-5,6-дигидро-2-пирон (1) (65%).

$$\begin{array}{ccccc} CH_3C=O & CH_2CN & & & & CH_3\\ CH_3 & + & C=O & & & & CH_3\\ CCH_3 & + & C=O & & & & CH_3\\ \end{array}$$

В присутствии пиридина, пиперидина, этилата натрия или поташа целевой продукт либо не образуется вовсе, либо получается с очень низкими выходами (до 10%).

Осуществлен гидролиз нагреванием I с 2-кратным избытком едкого кали в растворе этиленгликоля [5] с образованием 3,5-диметил-2,4-гексадиеновой жислоты (II) (32%).

$$(CH3)3C = CHC(CH2) = CHCOOH$$

$$(CH_3)_2 \xrightarrow{\text{CN}} O \xrightarrow{\text{Br}_s} I \xrightarrow{\text{Pd/CaCO}_s} (CH_3)_2 \xrightarrow{\text{CN}} O = O$$

Бромирование I в хлороформном растворе при 0—5° сопровождается отщеплением бромистого водорода с образованием 3-циано-3-бром-4,6,6-триметил-3,6-дигидро-2-пирона (III) (81%).

Гидрированием I в спиртовом растворе в приоутствии катализатора Pd/CaCO₃ (5% Pd) получен 3-циано-4,6,6-триметилтетрагидро-2-пирон (IV) (40%).

Экспериментальная часть

НК спектры сняты на спектрофотометре UR-20 в вазелиновом масле, спектры ПМР—на приборе «Hitachi-Perkin-Elmer R-20 В» с рабочей частотой 60 мГц, внутренний стандарт—ТМС; масс-спектр—на приборе МХ-1303 с прямым вводом образца в ионный источник.

3-Циано-4,6,6-триметил-5,6-дигидро-2-пирон (I). Смесь 23,2 г (0,02 моля) диацетонового спирта, 22,6 г (0,2 моля) циануксусного эфира и 7,7 г (0,1 моля) безводного ацетата аммония перемешивают 30—35 ч при 120—130°, подкисляют разбавленной (I:1) HCl, выпавшие кристаллы отфильтровывают и перекристаллизовывают из воды (табл.). Спектр ПМР, δ , м. ϑ .: 1,45 с (6—CH₃), 2,40 с (CH₂), 2,70 с (4—CH₃). Масс-опектр, м/е: 165 (М⁺).

3,5-Диметил-2,4-гексадиеновая кислота (II). Раствор 52 г (0,03 моля) I и 3,36 г (0,06 моля) КОН в 20 мл этиленгликоля кинятит с обратным холодильником до прекращения выделения аммиака (11-12 ч). После этого смесь разбавляют ведой (40-50 мл), полкисляют 20% H_2SO_4 , экстрагируют эфиром, эфирные выгяжки высушивают сульфатом магния, растворитель отгоняют, кристаллический остаток перекристаллизовывают из воды (табл.). Спектр IIMP, δ , м. δ .: 1,85 с [CH_3] C], 2,30 с (4— CH_3), 5,75 м (CH_3), 11,5 с (COOH).

Характеристики синтезированных соединений

Тиблица

5	38			C, %		H. %		N, %		Br, %		
Соедине	Выход,	Т. пл., °С Т. кип., °С/ мм	R _f	наплено	вычис-	найдено	вычис-	найдено	вычис-	найдено	BM4IIC-	ИК спектр, <i>v, см</i> ⁻¹
I	65	116-118	0,67	64,99	65,45	6,26	6,67	8,53	8,48		1	1710 (C=O) 1620 (C=C) 2350 (CN)
11	32	92 – 93**	0,76	68,86	68,57	8,26	8,57	-	_	-	-	1675 (C=O) 1628 (C=C) 1585 (C=C) 2250—2700 (COOH)
111	81	86—88	0,84	44 ,51	44,26	3,84	4,10	5,48	5,74	33,14	32,78	1715 (C=O) 1638 (C=C). 600 (C-Br) 2250 (CN)
IV	40	84 - 85	0,75	65,03	64,67	7,40	7,78	8,11	8,38	-	-	1725 (C=O) 2262 (CN)

^{*} Элюент-ацетон: бензол, 1:3. ** Лит. данные, т. пл. 93° [6].

3-Циано-3-бром-4,6,6-триметил-3,6-дигидро-2-пирон (III). К раствору 4 г (0,024 моля) І в 6 мл хлороформа при 0—5°, поддерживая температуру неизменной, прикапывают раствор 1,92 г (0,024 моля) брома

в 12 мл хлороформа. Растворитель отгоняют с помощью водоструйного насоса, остаток перекристаллизовывают из четыреххлористого углерода (табл.).

3-Циано-4,6,6-триметилтетрогидро-2-пирон (IV). В термостатированной «утке» при интенсивном встряхивании в раствор 1 г (0,06 моля) 1 в 50 мл абс. этанола в присутствии каталитических количеств катализатора Pd/CaCO₃ (5% Pd) пропускают водород. После полного поглощения последнего (3 ч) смесь фильтруют, из фильтрата удаляют растворитель, остаток перекристаллизовывают из гексана (табл.).

ЛИТЕРАТУРА

- А. А. Лветисян, Г. Е. Татевосян, Ц. А. Мангасарян, С. Г. Мацоян. М. Т. Дангян, ЖОрХ 6, 962 (1970).
- 2. А. А. Аветисян, Ц. А. Мангасарян, Г. С. Меликян, М. Т. Дангян, С. Г. Мацоян, ЖОрХ, 7, 692 (1971).
- 3. А. А. Аветисян, К. Г. Акопян, М. Т. Дангян, Арм. хим. ж., 26, 578 (1973).
- 4. А. А. Аветисян, А. Н. Джанджананян, С. Х. Карагозян, М. Т. Дангян, Арм. хим. ж., 30, 90 (1977).
- 6^{5.} Органикум. Практикум по органической химии, т. 2, пер. с нем, Изд. «Мир», М., 1978, стр. 108.

Ripe, Lotz, Ber., 35, 15 (193).

Армянский химический журнал, т. 36, № 5, стр. 343—344 (1983 г.)

письма в Редакцию

УДК 641.64:537.311

ОРГАНИЧЕСКИЕ ПОЛУПРОВОДНИКИ И МЕТАЛЛЫ. СИНТЕЗ И СВОЙСТВА ПОЛИАРОМАТИЧЕСКИХ КОМПЛЕКСОВ С ЙОДОМ

Комплексы с переносом заряда получаются при добавлении к раствору ароматических соединений йода. Кристаллические комплексы бензола и нафталина с йодом, выделенные из раствора, недостаточно устойчивы и легко распадлются на исходные составляющие [1, 2]. Допированные акцепторами сопряженные полнароматические комплексы, полученные при воздействии на полимер акцептором в жидкой или газовой фазе, обладают эначительной проводимостью [3].

Нам удалось реакцией нафталина и антрацена с йодом получить высокопроводящие, термостойкие, перастворимые продукты черного цвета, с металлическим блеском, которые, по данным элементного анализа, соответствуют общей формуле (Arl_x)_п. В зависимости от температуры реакции и соотношения реагентов содержание йода в синтезированных продуктах меняется от 5 до 30%. Выход полнароматических комплексов растет с увеличением температуры и концентрации йода в реакционной системе.

В спектрах ЭПР полученных продуктов сбиаружены узкие симметричные сигналы с интегральной интенсивностью 10^{17} — 10^{18} спин/г и g=