трия, 71,5 г (0,28 моля) аммонневой соли и 150 мл метилового спирта перемешивают 16 ч. Выпавший осадок хлористого натрия (12 г, 66,6%) отфильтровывают, опирт отгоняют, остаток, состоящий по ГЖХ из равномолеюулярной омеси 0,0-диэтилметилфосфоната и метилди (3-хлор-2-бутенил) амина, промывают разбавленным раствором соляной кислоты и экстрагируют хлористым метиленом, затем перегоняют в вакууме. Получают 27 г (63,5%) 0,0-диэтилметилфосфоната, т. жил. 54°/1,5 мм, п²⁰ 1,4100. ИК спектр, ν , см⁻¹: 1240 (P=O). Спектр ПМР, δ , м. δ .: 1,08 т (СН₃) 3,90 квинт (ОСН₂), 1,65 д (СН₃), J_{P-H} 10 Гц. Подщелачиванием солянокислого раствора получено 30,28 г (52%) метилди-3-хлор-2-бутениламина с т. кип. 117—121°/15 мм и т. пл. пикрата, не дающего депрессии температуры плавления в смеси с заведомо известным образцом [5].

Взаимодействие хлористого димстилди (3-хлор-2-бутенил) аммония с ацетатом натрия. Смесь 16,4 г (0,2 моля) ацетата натрия, 51,7 г (0,2 моля) аммониевой соли и 100 мл метилового спирта напревают при 60° 16 ч. Выпавший осадок хлористого натрия (10,4 г, 88%) отфильтровывают, спирт отгоняют, остаток перегоняют в вакууме. Получают 13,4 г (62%) 3-хлор-2-бутенилацетата с т. кип. $81^\circ/25$ мм, n_D^{20} 1,4481. Лит. данные: т. кип. $80,5-81,5^\circ/25$ мм, n_D^{20} 1,4495 [6]. ИК спектр, v, c м-1: 1670 (C=C).

ЛИТЕРАТУРА

- 1. А. Т. Бабаян, Нина П. Гамбарян, Изв. АН Арм. ССР, физ.-мат. ест. наукн, 2, 73 (1953).
- 2. А. Т. Бабаян, Н. П. Гамбарян, ЖОХ, Сб. ст., 1, 666 (1953).
- 3. А. Т. Бабаян, Н. П. Гамбарян, Нина П. Гамбарян, ЖОХ, 24, 1887 (1954).
- 4. Н. Г. Вартанян, Канд. дисс., 1955, стр. 48.
- 5. А. А. Петров, ЖОХ, 10, 1418 (1940).

Армянский химический журнал, т. 36, № 4, стр. 268—269 (1983 г.)

УДК 678.643(088.8)

огнестоякие эпоксидные композиции

Э. Г. ДАРБИНЯН, М. С. МАЦОЯН, А. А. СААКЯН и М. А. ЭЛИАЗЯН Институт органической химии АН Армянской ССР, Ереван Поступило 16 II 1983

Известны негорючие и самозатухающие композиции на основе эпоксидных смол, модифицированные фосфор- [1] или галогенсодержащими [2] соединениями. Недостатками таких композиций являются большие добавки модификаторов (25—30 масс. ч. на 100 масс. ч. эпоксидной смолы), что в конечном счете сказывается на свойствах отвержденных смол и удорожает процесс получения последних.

В последнее время появились работы [3, 4], в которых изучено влияние добавок солей металлов на огнестойкость эпоксидных композиций и показано, что эффективность последних значительно превышает эффективность фосфор- и галогенсодержащих добавок.

Нами изучена возможность использования молекулярных комплексов солей металлов переменной валентности с 3(5)-метилпиразолом (МП) в качестве антипиреновых добавок в эпоксидные композиции на основе диглицидилового эфира дифенилолпропана (ДГЭБА), отвержденного n,n'-диаминодифенилметаном (ДДМ).

Комплексы МП с солями металлов получали по методике [5]. ДГЭБА выделяли из промышленной смолы ЭД-20 перегонкой в вакууме. Композиции готовили совмещением комплексов и ДДМ с ДГЭБА при 343—353 К. Отверждение проводили в тефлоновых формах в термостате по следующему режиму: 373 К—1 ч, 393 К—2 ч. Кислородный индекс (КИ) определяли сжиганием образцов отвержденных композиций по методике [6]. Соотношение ДГЭБА: ДДМ+комплекс=4:1.

Найдено, что введение комплексов солей металлов с МП (2,6—3,07 масс. ч. на 100 масс. ч. ДГЭБА) в состав композиций повышает как огнестойкость, так и теплостойкость (табл.) по сравнению с композицией, отвержденной ДДМ без добавок комплексов. Как видно из приведенных данных, наибольшим огнезащитным эффектом обладают композиции с содержанием комплексносвязанных солей кобальта и марганца, наименьшим—пикеля.

Таблица
Характеристик: отвержденных композиций на основе ДГЭБА (100 масс. ч.)

ДДМ, масс. ч.	Антипиреновая добавка			Теплостой-	Твердость	Статиче-
	формула	масс. ч.	ки, %	кость по	по Бри- неллю, <i>МПа</i>	ский изгиб,
21,93	Co[MП] ₄ SO ₄	3,07	31,59	418,15	247,9	121,0
22,13	Co[MI]4CI2	2,87	31,10	401,15	226,6	121,1
21,93	Mn[MI]4Cl2	3,07	30,80	408,15	222,9	147,1
22,09	NI[MI]4CI2	2,91	27,79	396,15	222,6	110,0
22,34	Zn[MI]4Cl2	2,66	29,62	469,15	221,9	106,6
25.00	_	-	23,50	392,15	214,5	105,6

Результаты физико-механических испытаний свидетельствуют о том, что свойства композиций с добавками комплексов не ухудшаются по сравнению с композицией, отвержденной только ДДМ.

Таким образом, можно сделать вывод, что введение в эпоксидную композицию аминного отверждения комплексов солей металлов с МП позволяет повысить как огнестойкость, так и теплостойкость отвержденных композиций с сохранением физико-механических свойств на высоком уровне.

ЛИТЕРАТУРА

- 1. Авт. свид. СССР № 500218 (1976); Вюлл. изобр. № 3, 83 (1976).
- 2. Авт. свид. СССР № 339562 (1972); Бюлл. изобр. № 17, 73 (1972).
- 3. Авт. свид. СССР № 730749 (1980); Бюлл. изобр. № 16, 97 (1980).
- 4. Т. С. Зархина, Н. А. Халтуранский, Л. В. Кармилова, Ал. Ал. Берлин, ВМС, 22B, 690 (1980).
- 5. J. Reedijk, Rec., 89, 605 (1970).
- 6. C. P. Fenimor, F. J. Martin, Modern Plastics, 44, 141 (1966).