КРАТКИЕ СООБЩЕНИЯ

УДК 543.544.25

РАЗДЕЛЕНИЕ СЛОЖНЫХ ВИНИЛОВЫХ ЭФИРОВ МЕТОДОМ ГАЗО-АДСОРБЦИОННОЙ ХРОМАТОГРАФИИ

Р. С. МИРЗОЯН, В. П. КУКОЛЕВ, Р. А. ПЕТРОСЯН, А. Л. МКРТЧЯН и Д. Г. ДОЛУНЦ

Ереванское отделение ОНПО «Пластополимер» Поступнло 7 VII 1980

Ранее было показано, что днатомитовый носитель цветохром может быть использован для разделения различных органических соединений [1, 2]. В настоящей работе исследована возможность разделения смесн сложных виниловых эфиров (СВЭФ) монокарбоновых жислот С10-С17 на приборе ЛХМ-72 с детектором по теплопроводности, колонка 1 и Х ×4 мл. на носителях цветохром-1К фракции 0,315--0,46 мм, хромосорб Р фракции 0,21-0,30 мм, т. кол. 120-185°, т. исп. 285°, т. дет. 170-230°, окорость газа-носителя (водорода) 20-50 мл/м. Варырованием температуры колонки и испарителя, детектора, скорости газа-носителя удалось обеспечить наибольшее разделительное действие. Наиболее приемлемое разделение наблюдалось при хроматографировании в изотермическом режиме при 140° и скорости газа-носителя 20 мл/мин. Было показано, что при температуре колонки выше 150° пики первых четырех адсорбатов не разделяются. Некоторые хроматографические показатели (т. Імакс, Ах. Кр. Н), оценивающие относительное время удерживания СВЭФ по отношению к винилмаргаринату, неисправленное время удерживания (в с), адсорбционная активность твердого носителя, а также критерии разделяемости анализируемых компонентов и эффективности колонки приведены в таблице, из которой видно, что по мере возрастания температуры кипення испытываемых адсорбатов асимметричность А (высчитанная на половине высоты пика) изменяется от 1.0 для легкокипящих компонентов до 0,2 для винилмаргарината.

С целью сравнения некоторых хроматографических характеристик цветохрома-1К и доказательства отсутствия каталитических превращений проведено разделение указанной смеси с применением неподвижных жидких фаз (НЖФ) —полиэтиленгликоля (ПЭГ 20 м) и полиэтиленгликольадипината (ПЭГА), панссенных на носители: хроматон Н-АW фракции 0,25—0,31 ми, хромосорб Р, а также цветохром-1К. При эгом оказалось, что продолжительность апализа с использованием НЖФ (ПЭГА) на указанных носителях составляет 10,25; 13,63 и 12.82 мин, соответственно. Время же элюации анализируемых компонентов с использованием 10% НЖФ—ПЭГ 20 м, нанесенной на хроматон Н-АW, составляет 32,1 мин. Одновременно установлено, что при стандартной дозчровке пробы СВЭФ кислот С₁₀—С₁₇ в ГЖХ вследствие плохой вос-

произволимости пиков испытываемых адсорбатов при использовании хроматона H-AW не элюируются пики винилстеарата и винилнонадецилата. В аналогичных условиях опыта удовлетворительная проявка с заостренными и суженными пиками хроматографируемых веществ имеет место на конкурирующих носителях цветохрома-1К и хромосорба Р.

Таблица Хроматографические характеристики испытываемых сложных виниловых эфиров кислот C_{10} — C_{17}

Нанменозапие виниловых эфпров		t _{maxc}	Kp	As	Н, мм
Маргаринат	1,0	1460	1,26	0.18	5.6
ТвинтимасвП	C,63	925	1,35	0.16	6,1
Пенталецилат	0.38	567	1,52	0,25	5,2
Миристинат	0.22	325	1.53	0.67	5.6
Тридецилат	0,138	187	1,36	1,27	4,4
Лауринат	0,084	123	0.98	0,94	3,9
Ундецилат	0,061	84	1,20	1,0	3.2
Капринат	0,041	60	1,10	0,9	5,2
Пеларгонат	0,030	45	1,25	1,0	2,8
Каприлат	0,021	35	0,92	1,0	2,5
Энантат	0.01		_		_

ЛИТЕРАТУРА

1. Р. С. Мирзоян, А. С. Нванов, Г. М. Тер-Оганесян, Арм. хим. ж., 32, 14 (1979). 2. Р. С. Мирзоян, Н. Е. Месропян, С. С. Маилян, Арм. хим. ж., 32, 530 (1979).

Арманский химический журнал, т. 36, № 2, стр. 129-131

УЛК 546.287: 547.245

ПОЛИКОНДЕНСАЦИЯ ПРОИЗВОДНЫХ 2-БУТЕНА С ДИФУНКЦИОНАЛЬНЫМИ СИЛОКСАНАМИ

I. ПОЛИКОНДЕНСАЦИЯ 2-ХЛОР-2-БУТЕН-1,4-ДИОЛА С 1,5-ДИХЛОРГЕКСАЭТИЛТРИСИЛОКСАНОМ

М. О. МЕЛИКЯН и В. Е. КАРАПЕТЯН

Институт органической химии АН Армянской ССР, Ереван Поступило 29 VII 1981

В настоящее время особый интерес представляют смешанные кремнийорганические-органические олигомеры и полимеры. Интерес, проявленный к указанным соединениям со стороны как отечественных, так и зарубежных исследователей, объясняется тем, что они сочетают ценные качества кремнийорганических и органических олигомеров и полимеров, т. е. наряду с высокой термостойкостью, гидрофобностью, ха-