ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.314.2:541.49

КАТАЛИТИЧЕСКИЕ ПРЕВРАЩЕНИЯ НЕПРЕДЕЛЬНЫХ СОЕДИНЕНИИ В ВОДНОЙ СРЕДЕ

III. КАТАЛИТИЧЕСКОЕ ОКИСЛЕНИЕ СТИРОЛА В ВОДЕ В ПРИСУТСТВИИ ВОДОРАСТВОРИМЫХ КОМПЛЕКСОВ ПАЛЛАДИЯ

Г. А. ЧУХАДЖЯН, В. П. КУКОЛЕВ, Н. А. БАЛЮШИНА я Л. Н. МЕЛКОНЯН

Научно-производственное объединение «Наирит», Ереван

Поступило 28 V 1981

Исследовано каталитическое окисление стирола в воде в присутствии водорастворимого фосфинового комплекса палладия и различных добавок. Показано, что процесс протекает селективно и приводит исключительно к образованию ацетофенона. Табл. 1, библ. ссылок 4.

Каталитическому окислению стирола солями палладия посвящен ряд работ [1, 2]. Процесс протекает в присутствии Pd²⁺ солей в среде сильных кислот (HCl, HClO₄) и, как правило, приводит к образованию смеси продуктов окисления—фенилуксуоного альдегида, бензальдегида, ацетофенона и др. Детальное исследование процесса окисления стирола хлористым палладием показало, что соотношение основных продуктов реакции—фенилуксусного альдегида и ацетофенона составляет 10:1 [3].

В недавно опубликованной работе показано, что сульфированные фосфиновые комплексы переходных металлов хорошо растворимы в воде, стойки к действию кислорода и окислителей и обладают заметной каталитической активностью в воде, в частности, олигомеризуют ацетилены в водной среде [4]. Представлялось интересным исследовать возможность окисления стирола в присутствии водорастворимого фосфинового комплекса в водной среде.

В результате проведенных исследований было установлено, что окисление стирола в присутствии $(Ph_2PC_6H_4SO_8Na)_2 \cdot PdCl_2 \cdot 3H_2O$ протекает селективно с образованием ацетофенона*, причем в отличие отвышеуказанных работ процесс может осуществляться в нейтральных и слабожислых (pH 5-6) водных растворах.

С целью выявления оптимальных условий реажции было исследовано влияние различных факторов на характер протекания окислительного процесса (табл.).

Как видно из данных табл., окисление стирола комплексом палладия в отсутствие добавок приводит к сравнительно низкому выходу ацетофенона, что связано с быстрым восстановлением комплекса до метал-

I to the same

Идентификацию проводили методом ГЖХ, а также по температуре плавления соответствующих 2,4-динитрофенилгидразонов.

лического палладия. Введение в реакционную смесь таких добавок как $CuCl_2$ и хинон приводит к стабилизации комплекса и к увеличению выхода ацетофенона. Использование в реакции ПАВ (катамин и дыоданол) не меняет избирательности процесса, оказывая лишь незначительное влияние на выход продукта окисления.

Каталитическое окисление стирола в присутствии (Ph₂PC₆H₄SO₂Na)₂ PdCl₂·3H₂O при 100°

Тиблица

Время реак-	Наименование добавок	Количество добавок	Выход ацетофе- нона, %
2			следы
2	CCI2.2H2O	5 молей на I моль кат.	10
4	CCI, 2H,O	and the same of th	15
2	CCI, 2H,O		сдеды
2	ССІ ₂ ·2Н ₂ О катамин**	5 молей на 1 моль 0,1% p-ра	12
2	СС1, •2H ₂ O Дьюпанэл***	5 молей на 1 моль 0,1% р-ра	11
2	Хинон	5 молей на 1 моль	10
	Дьюпанол	0,1% раствора	

Температура реакции 80°.

Нами исследована также возможность окисления стирола в присутствии водорастворимого фосфинового комплекса родия, а также некоторых водорастворимых хелатных комплексов палладия. В первом случае окисления стирола не происходит, в то время как использование водорастворимых хелатных комплексов палладия приводит к селективному образованию ацетофенона с незначительными выходами—1 и 3%, соответственно.

Экспериментальная часть

В двухгорловую колбу, снабженную мешалкой и обратным холодильником, помещают 0.5 г катализатора, 1,62 г овежеперепнанного стирола, необходимое количество добавок и наливают 50 мл дистиллированной воды. При непрерывном перемешивании реакционную смесь нагревают на кипящей водяной бане, в омесь дифундируют кислород через газовую бюретку. По окончании реакции смесь охлаждают и из водного фаствора экспратируют юрганические продукты эфиром (3×30 мл). Эфирные вытяжки соединяют и сушат над безводным сульфатом магния 5—6 ч. Затем эфирный раствор фильтруют и отгоняют эфир. Остаток после удаления эфира анализируют хроматографически на колонке, содержащей 5% диоктисебацината +5% полиэтиленгликольадилината на носителе ИНЗ-600, при 100°.

^{**} Диметилалкил (С12-С18) бензиламмонийхлорид (катамин АВ).

^{***} Додецилсульфонат натрия (дьюпанол).

ՉՀԱԳԵՑԱԾ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ԿԱՏԱԼԻՏԻԿ ՓՈԽԱՐԿՈՒՄՆԵՐԸ ՋՐԱՅԻՆ ՄԻՋԱՎԱՅՐՈՒՄ

III. ԶՐԱԼՈՒԾ ՊԱԼԱԴԻՈՒՄԻ ԿՈՄՊԼԵՔՍՆԵՐԻ ԱՌԿԱՅՈՒԹՅԱՄԲ ՍՏԻՐՈԼԻ ԿԱՑԱԼԻՏԻԿ ՕՔՍԻԴԱՑՈՒՄԸ ԶՐՈՒՄ

Գ. Ա. ՉՈՒԽԱՋՅԱՆ, Վ. Պ. ԿՈՒԿՈԼԵՎ, Ն. Ա. ԲԱԼՅՈՒՇԻՆԱ և Լ. Ն. ՄԵԼՔՈՆՅԱՆ

Հետազոտվել է ջրալուծ սլալադիումի ֆոսֆինային կոմպլեքսի և տարբեր Հավելույթների առկայությամբ ստիրոլի կատալիտիկ օքսիդացումը ջրում ։ Յույց է տրված, որ պրոցեսն ընթանում է ընտրողական և բերում է հիմնականում ացետոֆենոնի առաջացմանը։

CATALYTIC CONVERSIONS OF UNSATURATED COMPOUNDS IN AQUEOUS MEDIA

III. CATALYTIC OXIDATION OF STYRENE IN AQUEOUS SOLUTIONS IN THE PRESENCE OF WATER-SOLUBLE PALLADIUM COMPLEXES

G. A. CHUKHAJIAN, V. P. KUKOLEV, N. A. BALYUSHINA and L. N. MELKONIAN

The catalytic oxidation of styrene in water in the presence of a water-soluble phosphine complex of palladium and various additives has been studied.

The process has been shown to proceed selectively leading mainly to acetophenone formation.

ЛИТЕРАТУРА

- 1. W. Hafner, R. Jiza, J. Seldmeier, J. Smitt, Chem. Ber., 95, 1575 (1962).
- 2. РЖХ I (II)1981 1H11ОП.
- 3. Л. М. Захарова, М. Н. Варгафтик, И. И. Моисеев, Л. А. Кацман, Изв. АН СССР, сер. хям., 3, 700 (1970).
- 4. Г. А. Чухаджян, Т. С. Элбакян, Л. И. Саградян, Арм. хнм. ж., 34, 163 (1981).

Армянский химический журнал, т. 35, № 6, стр. 869—375 (1982 г.).

УДК 547.513.4.322±542.944.1.

ИССЛЕДОВАНИЕ ЖИДКОФАЗНОГО ГАЛОГЕНИРОВАНИЯ НЕНАСЫЩЕННЫХ СОЕДИНЕНИЙ

II. ПОВЕДЕНИЕ ХЛОРЗАМЕЩЕННЫХ У ДВОЙНОЙ СВЯЗИ 2-БУТЕНОВ ПРИ ХЛОРИРОВАНИИ В ДИМЕТИЛФОРМАМИДЕ

Г. Г. МКРЯН, С. К. АКОПЯН и Г. Т. МАРТИРОСЯН Научно-производственное объединение «Наирит», Ереван Поступило 28 VII 1981

Изучено жидкофазное низкотемпературное хлорирование 2-хлор-, 1,2-дихлор- и 2,3-дихлор-2-бутенов в диметилформамиде. Показано, что во всех случаях наряду с продуктами аномального и аддитивного присоединения хлора образуются продукты сопряженного хлорирования—вимониевые соли. Полученные соли гидролизованы в хлоркетоны и формоссипроизводные. Исследовано термическое расцепление солей.

Библ. ссылок. 13.