XXXIV, № 9, 1981

УДК 547.589+547.78

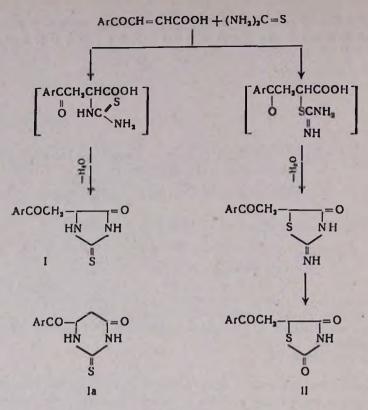
ИССЛЕДОВАНИЕ РЕАКЦИИ β-АРОИЛАКРИЛОВЫХ КИСЛОТ С ТИОМОЧЕВИНОЙ

II. СИНТЕЗ 5-АРОИЛМЕТИЛТИОГИДАНТОИНОВ

Р. Дж. ХАЧИКЯН, С. М. АТАШЯН и С. Г. АГБАЛЯН Институт органической химии АН Армянской ССР, Ереван Поступило 20 X 1980

Установлено, что при кипячении тиомочевины с β-ароилакриловыми кислотами в толуоле в основном образуются производные тиогидантонна.

Найдено, что последние в присутствии кислот подвергаются перегруппировке в тиазолидиндионы-2,4.


Табл. 2, библ. ссылок 12.

Реакции тиомочевины с электрофильными олефинами открывают широкие возможности для синтеза гетероциклических соединений [1—4]. С целью синтеза гетероциклических соединений, содержащих в молекуле одновременно атомы серы и азота, нами изучена реакция β-ароилакриловых кислот с тиомочевиной в различных условиях [5].

Необходимо отметить, что в литературе известна лишь реакция β-ароилакриловых кислот с тиомочевиной, приводящая к образованию 2-иминотиазолидинов-4 [6—8].

В настоящей работе описывается получение производных тиогидантонна. Найдено, что при конденсации β-ароилакриловых кислот с тиомочевиной в кипящем сухом толуоле в качестве основных продуктов образуются соединения, не растворимые в щелочах и не образующие гидрохлоридов. Согласно литературным и нашим данным о преимущественной ориентации нуклеофильной атаки по α-углеродному атому этиленовой связи β-ароилакриловых кислот [9, 10], конечными продуктами реакции должны быть тиогидантоины І. Действительно, образование тноурацила Іа, если бы осуществилась атака по β-углеродному атому, опровергается сравнением с известными образцами [6].

Наряду с основными продуктами выделены вещества II, растворимые в щелочах—5-замещенные тиазолидиндионы-2,4 (псейдотиогидантоины). Образование II можно представить по схеме, включающей реакцию по атому серы и гидролиз образующегося в реакции иминосоединения.

Необходимо отметить, что проведение опыта без водоотделителя ведет к преимущественному образованию II.

При попытке окисления 5-ароилметилтиогидантоинов в кислой среде вместо ожидаемых имидазолинов были получены 4-ароилметилтиазолидиндионы-2,4. Схему перегруппировки можно представить следующим образом:

$$1 \longleftrightarrow \frac{ArCOCH_2}{N} \xrightarrow{I} \stackrel{= O}{N} \xrightarrow{H^+}$$

Итак, полученные нами данные свидетельствуют о том, что образование тиазолидиндионов-2,4 может происходить по обоим направлениям представленной схемы, поскольку β-ароилакриловые кислоты являются сильными органическими кислотами (рН 1—2).

Установлено, что при метилировании 5-ароилметилтиогидантоинов образуются продукты диметилирования, а при действии едкого натра происходит расщепление молекулы с образованием тиогидантоиновой кислоты.

Вещества I и II трудно сжигаются, поэтому для определения углерода и водорода пришлось сжигать их на заранее очищенном и прокаленном кварце, который обеспечивает равномерное горение. Сера определялась по модифицированному методу Дюма-Прегля [11, 12].

Экспериментальная часть

УФ спектры сияты на спектрофотометре СФ-4А, масс-спектры—на МХ-1303 (160°, нонизирующее напряжение 50 В, ток эмиссии 1,5 мА, прямой ввод образца в область ионизации), ИК спектры—на UR-20.

5-Ароилметилтиогидонтоины (1). Смесь 0,01 моля β -ароилакриловой кислоты, 0,76 г (0,01 моля) тиомочевины кинятят в 15 мл толуола 12 ч с водоотделителем. Выделившийся аммиак поглощают водой (щелочная реакция на фенолфталеин). Образовавшийся осадок отфильтровывают, промывают водой, затем высушивают. Для очистки от примесей кипятят в растворителях (табл. 1). ИК спектр, cm^{-1} : 1600—1615, 1580—1590 (C=C), 1670—1680 (C=O), 3200—3250 (NH), 1120—1145, 1180—1190, 1460—1470, 1500—1520 (C=S). УФ спектр (CH₃OH), λ_{max} , nm: 216, 256. В ИК спектре тиоурацила полоса поглощения амидного карбонила находится при 1730 cm^{-1} .

5-Ароилметилтиазолидиндионы-2,4 (II). От толуольного фильтрата (см. предыдущий опыт) отгоняют толуол, остаток растворяют в разбавленной щелочи, отфильтровывают. Фильтрат подкисляют разбавленной соляной кислотой, образовавшийся осадок отфильтровывают, несколько раз промывают водой. Полученные вещества очищают от растворителей (табл. 2). ИК спектр, cm^{-1} : 1680, 1720 сл. (C=O), 1580 (C=C), 3200 (NH). УФ спектр (CH₃OH), λ_{max} , nm: 205, 250—257.

Перегруппировка 5-ароилметилтиогидантоинов. К 0,9 г (0,0035 моля) 5-(n-толуил) метилтиогидантоина и 0,9 г (0,01 моля) монохлоруксусной кислоты в 7,5 мл воды добавили 1,5 мл 10% серной кислоты, кипятили 4—5 ч. Образовавшийся осадок отфильтровали, затем растворили в 2N растворе NaOH, отфильтровали от нерастворившихся примесей. Фильтрат подкислили разбавленной соляной кислотой, образовавшийся осадок отфильтровали, промыли водой, высушили. Выход 5-(n-толуил) метилтиазолидиндиона-2,4 0,34 г (39%), т. пл. 169—170° (вода). ИК спектр, cm^{-1} : 1680 (C=O), 1605, 1580 (C=C), 3220 (NH). УФ спектр (CH_3OH), λ_{max} , nm: 204, 255. Найдено $\frac{1}{0}$: C 58,10; H 5,00; N 5,65;

\$ 13,07. $C_{12}H_{11}NO_3$ \$. Вычислено $^0/_0$: С 58,00; Н 4,45; N 5,62; \$ 12,85. Аналогично из 1 г (0,0034 моля) 5- β -тетрагидропафтоилметилтиогидантоина, 0,9 г (0,01 моля) монохлоруксусной кислоты в 8,3 мл воды и 1,7 мл $10^0/_0$ H_3 \$О $_4$ получили 0,2 г ($21^0/_0$) 5- $(\beta$ -тетрагидронафтоил) метнлтиазолидиндиона-2,4. ИК спектр, см $^{-1}$: 1680 (C=O), 1605, 1580 (C=C), 3220 (NH). УФ спектр (C_2H_3 OH), λ_{max} , нм: 208, 260. Найдено $^0/_0$: С 62,85; Н 5,98; N 4,01. $C_{15}H_{15}$ NO $_3$ \$. Вычислено $^0/_0$: С 62,85; Н 5,98; N 4,01.

5-Ароилметилтногидантонны (1)

Таблица 1

R	Выход. %	Т. пл., °С (растворитель для кристал- лизации)	Найдено, %				Вычислено, %			
			С	Н	N	S	С	Н	N	S
C ₆ H ₅	51	242 (спирт)	56,2	3,9	12,3	13,4	56,4	4,3	11,9	13,7
n-CH ₃ C ₆ H ₄	60	241—242 (толуол)	58,3	4,9	11,5	12,3	58,0	4,9	11,3	12,5
n-CH3OC4H4	48	232-233 (ацетон)	51,8	4,1	9,7	11,7	51,4	4,3	10,0	11,4
β-тетраги- дронафтонл	55	238 (толуол)	63,0	5,7	9,3	-	62,5	5,6	9,7	11,1
.n-BrC ₆ H ₄	27	220 (спирт)	41,9	3,55	7,18	-3	42,32	2,89	8,97	-
n-CIC ₆ H ₄	50	220 (спирт)	50,7	3,3	10,47	-	49,34	3,19	10,46	-

5-Ароилметилтиязолидиндионы-2,4 (II)

Таблица 2

R	Выход, %	Т. пл., °С (растворитель для кристал- лизации)	Найлено, %				Вычислено, %			
			С	н	N	S	С	Н	N	s
C ₆ H ₅	36	172—175 (уксусная кнс- лота—вода)	59,6	4.8	6.9	13,4	56,2	3,8	6,0	13,6
n-CH ₃ C ₆ H ₄	25	172 (бензол)	57,8	4,2	5,5	12,3	57,8	4,0	5.6	12,8
л-СН ₃ ОС ₆ Н ₄ \$-тетрагидро-	20	167—168 (уксусная кис- лота—вода)	52,1	5.3	4,9	11,6.	51,2	3,9	5,0	11,0
нафтоил	21	166—167 (хлороформ— петр. эфир)	62,0	4,9	5,1	11,0	62,3	5,2	4,8	11,1
n-BrC ₆ H ₄	66,6	163—169 (уксусная кис- лота—вода)	42,7	3.2	3,7	_	42,5	2,9	4,4	-

Метилирование 5-(n-толуил) метилтиогидантоина. К 0,61 z (0,025 моля) 5-(n-толуил) метилтиогидантонна добавили 30 мл 1N раствора NаOH и 0,09 мл диметилсульфата. При комнатной температуре перемешивали до исчезновения маслянистого слоя. Образовавшийся осадок отфильтровали, промыли раствором NaOH, затем несколько раз водой. Получили 0,4 z (57%) 1,2-диметил-5-(n-толуил) метилтиогидантоина (III), т. пл. 216—217° (спирт). Найдено %: С 60,08; H 5,03; N 10,14. $C_{14}H_{16}N_{2}OS$. Вычислено %: С 60,20; H 5,10; N 10,59.

5- $(\beta$ -Tетрагидронафтоил) метилтиогидантоиновая кислота. К 1,4 г (0,005 моля) 5- $(\beta$ -Tетрагидронафтоил) метилтиогидантоина добавили 100 мл метанола и 2 г (0,05 моля) едкого натра. Реакционную смесь оставили при комнатной температуре на 4 дня. Отфильтровали не вошедший в реакцию тиогидантоин с т. пл. 245° (всего 0,23 г). Фильтрат подкислили разбавленной соляной кислотой. Выделившийся осадок отфильтровали, промыли водой. Т. пл. 246°, выход 0,8 г (57%). Найдено %: С 58,80; Н 5,60; N 9,28; S 10,41. $C_{15}H_{18}O_3$. Вычислено %: С 58,80; Н 5,92; N 9,14; S 10,41. УФ спектр (CH_3OH), λ_{max} , нм: 249, 270. Т. пл. гидрохлорида 245°. Найдено %: С1 10,00. $C_{15}H_{18}N_2O_3S$ -HCl. Вычислено %: С1 10,34.

ԹԻՈՄԻԶԱՆՅՈՒԹԻ ՀԵՏ β-ԱՐՈՒԼԱԿՐԻԼԱԹԹՈՒՆԵՐԻ ՌԵԱԿՑԻԱՅԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

II. 5-ԱՐՈՒԼՄԵԹԻԼԹԻՈԳԻԴԱՆՏՈՒՆՆԵՐԻ ՍԻՆԹԵՉԸ

n. g. եսջիկցան, u. o. upacsut և u. a. աշբալցան

Հաստատված է, որ Թիոմիզանյութը β-արոիլակրիլաթթուների հետ տոլուոլում եռացնելիս հիմնականում առաջանում են Թիոգիդանտոինի ածանցյալներ։ Ցույց է տրված, որ վերջիններս թթուների առկայությամբ ենթարկվում են վերախմրավորման դառնալով թիագոլիդինդիոն-2,4։

INVESTIGATION OF THE REACTION BETWEEN β-AROYLACRYLIC ACIDS AND THIOUREA

II. SYNTHESIS OF 5-AROYLMETHYLTHIOHYDANTOINS

R. J. KHACHIKIAN, S. M. ATASHIAN and S. G. AGBALIAN

It has been found that refluxing thiourea with β -aroylacrylic acids in toluene derivatives of thiohydantoins are obtained. It has been shown that the latter undergo rearrangement in the presence of acids and are transformed into 2,4-thiazolidindiones.

ЛИТЕРАТУРА

- 1. A. J. Cavallito, C. M. Martioh, F. C. Nachod, J. Am. Chem. Soc., 73, 2544 (1951).
- 2. R. Zimmerman, Angew. chem., 85, 1025 (1963).
- 3. H. Erlemeyer, F. Hertz, Helv. Chim. Acta., 25, 832 (1942).
- 4. S. M. Despajde, A. K. Mukerjee, Curr. Sci. (India), 81, Na 4, 139 (1972).
- Б. Р. Дж. Хачикян, С. М. Аташян, С. Г. Агбалян, Арм. хим. ж., 34, 569 (1981).
- 6. J. Bougault, P. Chambrier, Compt. rend., 224, 656 (1947).
- 7. E. A. Sollman, Rev. Roum. Chem., 23, 1597 (1978).
- 8. A. Sammour, M. I. B. Sellm, E. A. Sollman, J. chem., 15, 311 (1972-1973). [PXX 21X 185 (1974)].
- 9. М. Н. Рыбинская, А. Н. Несмеянов, Л. В. Рыбин, Усп хим., 36, 1809 (1967).
- 10. Н. П. Чуркина, Н. П. Гамбарян, Д. А. Бочвар, С. Г. Агбалян, Арм. хим. ж., 30, 370 (1977).
- 11. А. А. Абрамян, А. С. Тевосян, Р. А. Мегроян, ЖАХ, 30, 817 (1975).
- 12. А. А. Абрамян, А. Х. Ханзадян, Арм. хнм. ж., 31, 790 (1978).