XXXIV, № 8, 1981

УДК 547.128+546.55

ОПРЕДЕЛЕНИЕ КОНСТАНТ РАВНОВЕСИЯ И РАСПАДА ПРОМЕЖУТОЧНОГО КОМПЛЕКСА В РЕАКЦИЯХ ГИДРОПЕРЕКИСЬ КУМОЛА—АМИНОСПИРТЫ В АМИДАХ

С. К. ГРИГОРЯН н Е. Я. ВАРДАНЯН

Ереванский государственный университет

Поступило 7 V 1980

В диметилформамиде и формамиде под действием триэтаноламина и моноэтаноламина гидроперекись кумола распадается каталитически. Такой распад удовлетворяет кинетическому уравнению типа Михаэлиса-Ментена. Рассчитаны $K_{\rm pash}$ промежуточного комплекса между гидроперекисью и аминоспиртом и $K_{\rm pach}$ каталитического распада. Рис. 2, табл. 1, библ. ссылок 5.

Распад гидроперекисей (ROOH) в присутствии аминоспиртов (A), таких как триэтаноламин (ТЭолА), диэтаноламин (ДЭолА), моноэтаноламин (МЭолА) и др. в амидах (диметилформамиде, формамиде) происходит каталитически [1]. Хроматографическим и химическим методами анализа установлено, что при распаде ROOH аминоспирты не расходуются. Следует отметить, что в отсутствие аминоспиртов в амидах гидроперекиси до 80° практически не распадаются [2].

Как известно [3], в водных средах вышеуказанные аминоспирты с катионами переменной валентности (Cu²+, Co²+, Mn²+ и др) образуют аминные комплексы состава (AMe)²+, также вызывающие в качестве модельных ферментов непрерывный каталитический распад ROOH. Нами было сделано предположение об образовании промежуточного комплекса, в какой-то степени объясняющее механиэм томогенного каталитического процесса, и выведено кинетическое уравнение типа Михаэлиса-Ментена [3]. Выведено уравнение и для каталитического распада гидроперекисей в присутствии аминоспиртов в амидах. Методика эксперимента подробно описана в [1].

Образование кинетически активного комплекса (М) можно представить по схеме

$$nROOH + A \xrightarrow{K_1} M$$
 (1)

Если $[A]_0$ — общая концентрация связанного и несвязанного катализатора, то концентрация связанного (входящего в промежуточный комплекс M) катализатора будет $[A]_p = [A]_0 - [M]_p$, где $[M]_p$ — концентрация кинетически активного комплекса $[nROOH \cdots A]_p$, всегда значительно меньшая концентраций реагентов и продуктов [4].

В данном случае $[ROOH]_0 \ll [A]_0$, $[ROOH]_p = [ROOH]_0 - [M]_p$. Поскольку $[A]_0 \gg [M] \ll [ROOH]_0$, то свободная концентрация амино-

спирта (катализатора) $[A]_p \simeq [A]_0$.

Константа равновесия будет

$$K_{\text{pas}_{\parallel}} = \frac{K_{1}}{K_{-1}} = \frac{[M]_{p}}{([A]_{0} - [M]_{p})([ROOH]_{0}^{n} - [M]_{p})} = \frac{[M]_{p}}{[A_{0}]([ROOH]_{0}^{n} - [M]_{p})} = \frac{[M]_{p}}{[A]_{0}([ROOH]_{0}^{n} - [A]_{0}[M]_{p}}$$
(2)

откуда

$$[M]_{p} = \frac{K_{\text{pann}} [A]_{0} [\text{ROOH}]_{0}^{n}}{1 + K_{\text{pann}} [A]_{0}}$$
(3)

Конечные продукты получаются при распаде промежуточного кинетически активного комплекса M [4].

$$[M]_{\rho} \xrightarrow{K_{\text{pacn}}}$$
 конечн. продукты $+A$ (4)

Согласно нашим экспериментальным данным [5], при температурах ниже 40° комплекс М образуется, однако он практически не распадается с получением продуктов реакции. Следовательно, скорость образования [М] значительно больше скорости его превращения в продукты реакции.

Естественно, что с повышением температуры уменьшается констан-

та равновесия (Крави) и Краси растет.

Исходя из этого обстоятельства, мы полагаем, что скорость реакции обусловлена скоростью распада промежуточного комплекса по акту (4), т. е.

$$W = -\frac{d[\text{ROOH}]}{dt} K_{\text{psen}} [M]_{\text{p}}$$
 (5)

Подставляя в это уравнение значение [М], из уравнения (3), получаем

$$W = \frac{K_{\text{pace}} K_{\text{pass}} [A]_0 [\text{ROOH}]_0^a}{1 + K_{\text{pass}} [A]_0}$$
 (6)

Известно [5], что порядок по A равен единице, по данным же рис. порядок реакции по ROOH также примерно равен единице (0,98). Отсюда, преобразуя уравнение (6), получаем уравнение (7), при помощи которого рассчитывается $K_{\text{рави}}$ и $K_{\text{рави}}$ для кинетически активного комплекса из зависимости 1/W от 1/[ROOH]:

$$\frac{1}{W} = \frac{1}{K_{\text{pacn}} \left[\text{ROOH} \right]_0} + \frac{1}{K_{\text{pacn}} K_{\text{paen}} \left[\text{ROOH} \right]_0 \left[A \right]_0}$$
 (7)

На основании экспериментальных данных, приведенных в настоящей работе, рассчитаны величины $K_{\text{расп}}$ и $K_{\text{равн}}$. Расчет показывает правильность выбранной модели процесса для рассмотренных систем.

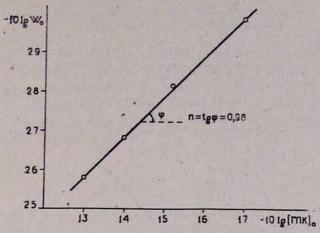


Рис. 1. Порядок реакции по гидроперекиси: $[T\Theta aA]_0 = 0.2 \ moab/a$, $[\Gamma\Pi K]_0 = 0.05; \ 0.04; \ 0.03; \ 0.02 \ moab/a, \ t=80^\circ$.

Расчет Красп и Кравн.

а) для реакции $\Gamma\Pi K+T$ ЭолA в формамиде (ΦA). Гидроперекись в ΦA распадается только каталитически (без расхода триэтаноламина). Данные по завноимости $W_{\text{кат}}$ от $[A]_0$ приведены в таблице.

Tаблица Зависимость $W_{\text{кат}}$ от исходной концентрации A для реакции Γ ПК + (ТЭолА) и Γ ПК + (МЭолА)

	[ГПК] ₀ =0,05 моль/л ТЭолА в ФА, t=80°				[ГПК] ₀ =0,04 моль/л МЭолА в ДМФА, t=70°			
[А]0-10, моль/л	5	4	3	2	3	2,4	2	1,2
$W_{\text{KBT}} \cdot 10^{-4}$, MOAD/A·MUH	9,25	6.38	5,00	3,25	4,16	3,2	2,5	1,66

Из графического анализа рис. 2 (прямая «а» для ТЭолА) получается, что

$$\frac{1}{K_{\text{pscn}} \cdot [\text{ROOH}]_0} = 100 \text{ n·muh/morb}$$

И

$$\frac{1}{K_{\text{pacn}} \cdot K_{\text{pash}}[\text{ROOH}]_{0}} = 625 \text{ мин}$$

откуда при $[ROOH]_0 = 0.05$ моль/л,

$$K_{\text{pach}} = 0.2 \text{ мин}^{-1}, \quad K_{\text{pank}} = 0.16 \text{ л/жоль (80°)}.$$

6) Для реакции ГПК+(МЭолА) в диметилформамиде (ДМФА) данные по зависимости Wrat от [А] приведены в табл. Из рис. 2 (прямая «б» для МЭолА) следует:

$$\frac{1}{K_{\text{pagn}} \cdot [\text{ROOH}]_0} = 150 \text{ A·muh/morb}$$

И

$$\frac{1}{K_{\text{pach}} \cdot K_{\text{pash}} [\text{ROOH}]} = 550 \text{ MuH}$$

откуда при $[ROOH]_0 = 0,04$ моль/л получаются

$$K_{\text{pagn}} = 0.16 \text{ MuH}^{-1}, \quad K_{\text{pagn}} = 0.29 \text{ A/MOAB} (70^{\circ}).$$

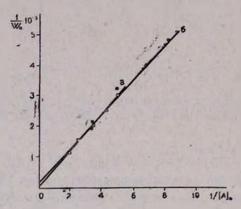


Рис. 2. Зависимость $1/W_0$ от $1/[A]_0$ для реакций: а (Э) — ГПК+(ТЭолА) при $t=80^\circ$, 6 (•) — ГПК+(МЭолА) при $t=70^\circ$.

ԱՄԻԴՆԵՐՈՒՄ ԸՆԹԱՑՈՂ ԿՈՒՄՈԼԻ ՀԻԴՐՈՊԵՐՕՔՍԻԴ-ԱՄԻՆՈ-ՍՊԻՐՏՆԵՐ ՌԵԱԿՑԻԱՆԵՐՈՒՄ ՄԻՋԱՆԿՅԱԼ ԿՈՄՊԼԵՔՍՆԵՐԻ ՀԱՎԱՍԱՐԱԿՇՌՈՒԹՅԱՆ ԵՎ ՔԱՅՔԱՑՄԱՆ ՀԱՍՏԱՏՈՒՆՆԵՐԻ ՈՐՈՇՈՒՄԸ

Ս. Կ. ԳՐԻԳՈՐՅԱՆ և Ե. Ցա. ՎԱՐԴԱՆՑԱՆ

Ամիդներում (դիմեթիլֆորմամիդում և ֆորմամիդում) ամինասպիրաների (տրիկթանոլամին և մոնոէթանոլամին) ներկայությամբ կումոլի հիդրոպերօքսիդը քայքայվում է կատալիտիկորեն։ Հիդրոպերօքսիդի այդպիսի քայ-քայումը բավարարում է Միխայելիս-Մենտենի տիպի կինետիկական հավասարմանը։

Որոշված են հիդրոպերօքսիդի և ամինոսպիրտի միջև առաջացած միջանկյալ կոմպլեքսի հավասարակշռության հաստատունը (K_{i-i}) և քայքայման հաստատունը (K_{i-i}) նշված կոմպլեքսը կատալիտիկորեն քայքայվում է ֆերմենտատիվ ռեակցիաներին հատուկ օրինաչափությամբ։

THE EQUILIBRIUM AND DECOMPOSITION CONSTANTS OF INTERMEDIATE COMPLEXES IN CUMENE HYDROPEROXIDE-AMINOALCOHOL REACTIONS PROCEEDING IN AMIDES

S. K. GRIGORIAN and E. Y. VARDANIAN

Cumene hydroperoxide decomposes catalytically in dimenthyl formamide and formamide solutions in the presence of triethanol and monoethanol amines. Experimental data obey the Michaelis-Menthen kinetic equation. The equilibrium (K_{eq}) and decomposition (K_{de}) constants of the intermediate complex formed beetween cumene hydroperoxide and aminoalcohols have been determined.

ЛИТЕРАТУРА

- 1. С. К. Григорян, Е. Я. Барданян, Арм. хим. ж., 33, 452 (1980).
- 2. С. К. Григорян, Е. Я. Варданян, Л. Г. Мелкончн, Уч. зап. ЕГУ, 8 70, (1973).
- 3. С. К. Григорян, Арм. хим. ж., 32, 763 (1979)
- 4. Л. Гаммет, Основы физической органической химин, ИЛ. М., 1972, стр. 105.
- 5. С. К. Григорян, Ш. А. Маркарян, Н. М. Бейлерян, Арм. хим. ж., 32, 516 (1979).