XXXIV, № 6, 1981

УДК 615.277.3:547.853.3

производные пиримидина

LII. СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКИЕ СВОИСТВА НЕКОТОРЫХ N_1 -(ПИРИМИДИЛ-4)-5-ФТОРУРАЦИЛОВ

В. Э. ХАЧАТРЯН, Р. Г. МЕЛИК-ОГАНДЖАНЯН, В. С. МИРЗОЯН, Ж. С. МАНУКЯН и С. А. ПАПОЯН

Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР, Ереван

Поступило 7 XII 1979

Синтезирован ряд N₁-(2-бензол-6-метилпиримидил 4)-5-фторурацилов. Исследованы ИК, ПМР, масс-спеютры, токсичность и противоопухолевая активность полученных соединений.

Табл. 2, библ. ссылок 10.

В продолжение исследований по поиску малотоксичных противоопухолевых соединений среди N-замещенных 5-фторурацилов [1, 2] в настоящем сообщении описан синтез некоторых N_1 - (пиримидил-4)-5-фторурацилов III по следующей схеме:

a. $X = CH_3O$, Y = CI, Z = H, 6. $X = CH_3O$, Y = Br, Z = H, 8. $X = CH_3O$, $Y = NO_2$, Z = H, r. X = H, Y = CI, $Z = CH_3O$, a. X = H, Y = Br, $Z = CH_3O$, e. X = H, $Y = NO_2$, $Z = CH_3O$, w. $X = CH_3O$, Y = Z = H

Гидрохлорид 2-метокси-5-нитрофенилацетамидина получен действием газообразного аммиака на этиловый иминоэфир, синтезированный пропусканием сухого хлористого водорода через эквимолярную смесь 2-

метокси-5-нитробензилцианида [3] и этилового спирта. Аналогично из гидрохлорида этилового иминоэфира 3-нитро-4-метоксифенилуксусной кислоты [4] синтезирован соответствующий амидин. Остальные амидины получены по описанному в литературе методу [5—8].

Конденсацией замещенных метоксифенилацетамидинов с ацетоуксусным эфиром (нагревание 6—8 и в среде абс. этанола и в присутствии этилата натрия) синтезированы 2-замещенные 4-окси-6-метилпиримидины I, которые под действием хлорокиси фосфора и в присутствии диметиланилина переведены в соответствующие хлорироизводные II. 2-Замещенные 4-хлор-6-метилпиримидины (II) введены в реакцию с 5-фторурацилом в среде диметилсульфоксида в присутствии безводного углекислого калия. При нагревании этой смеси до 150° с 55—70% выходом образуются N_I-(2-бензил-6-метилпиримидил-4)-5-фторурацилы (III).

Строение I—III подтверждено данными ИК, ПМР и масс-спектрометрии. Чистота и индивидуальность определена ТСХ и элементным анализом (табл. 1,2).

В ИК спектрах соединений I—III присутствуют полосы поглощения в областях 1600 и 3080 см⁻¹, характерные для бензольного ядра, и 1250 см⁻¹—для метоксильной группы. Спектры 4-оксипиримидинов I содержат интенсивное поглощение при 1660—1680 см⁻¹, соответствующее карбонильной группе. В этих спектрах почти отсутствуют полосы поглощения в областях 3300 (валентные колебания оксигруппы) и 1580 см⁻¹ (колебания ароматичеокого пиримидинового ядра). Исходя из этих данных можно предположить, что 4-оксипиримидины 1 в кристаллическом состоянии существуют в виде оксо-таутомера с примесью окси-формы.

В спектрах 4-хлорпиримидинов II, как и следовало ожидать, сильно возрастает интенсивность поглощения пиримидинового ядра при $1575 \ cm^{-1}$. В соединениях III карбонильным группам 5-фторурацила соответствует поглощение двух отдельных полос при $1680 \ и \ 1750 \ cm^{-1}$, а частота $3190 \ cm^{-1}$ относится к валентным колебаниям NH-группы.

В ПМР спектрах II и III ароматические протоны бензольного кольца дают мультиплеты в области 7,38—6,75 м. д., характерные для 1,3,4- или 1,2,5-тризамещенных бензолов. Синглет (м. д) 2,45 относится к метильным протонам у Св ппримидинового ядра, 3,70—к метоксильной группе, 4,10—к метиленовым протонам бензильного радикала, 7,96—к протону у Св ппримидинового ядра. Кроме того, в спектрах соединений III имеются дублеты при 8,60 м. д., которые возникают вследствие взаимодействия протона у Св с атомом фтора 5-фторурацильного ядра.

Молекулярные веса I—III, определенные масс-спектрометрически, совпадают с молекулярными формулами этих соединений.

Токсичность и противоопухолевая активность III исследованы по описанному в литературе методу [9]. Полученные данные свидетельствуют о том, что эти соединения обладают значительно более слабой токсичностью по сравнению с 5-фторурацилом, причем N₁-[2-(5-замещенные 2-метоксибензил) 6-метилпиримидил-4]-5-фторурацилы (III-е) менее токсичны, чем изомерные им 3-замещенные-4-метоксибензиланалоги

(IIIa-в). По сравнению с 5-фторурацилом эти соединения почти не обладают противоопухолевой активностью на опухолевом штамме саркома-45.

Экспериментальная часть

ИК спектры соединений в виде суспензии в вазелиновом масле сияты на приборе UR-20, ПМР спектры—на приборе «Вариан Т-60» с рабочей частотой 60 МГц. Спектры соединений II получены в стандартных условиях (7% растворы ССІ₄), а соединений III—в дейтеропиридине. Внутренним эталоном служил ГМДС. Масс-спектры сняты на приборе МХ-1303 с прямым вводом образца в область ионизации. ТСХ проведена на силуфоле UV-254 в системах этилацетят—метанол, 9:1 для Іа-е, эфирексан, 9:1 для ІІа-е, этилацетат—бензол, 5:1 для ІІІа-ж, проявление в ЪФ свете.

Гидрохлорид этилового иминоэфира 2-метокси-5-нитрофенилуксусной кислоты. Через смесь 5,8 г (0,03 моля) 2-метокси-5-нитробензилцианида, 1,4 г (0,03 моля) абс. этянола, 30 мл абс. эфира и 30 мл хлороформа при охлаждении водой пропускают ток безводного хлористого водорода до насыщения. Смесь оставляют на 12 ч, выпавший осадок фильтруют, промывают эфиром. Выход 7,0 г (82,5%), т. пл. 144—145° (из спирта). Найдено %: С 48:51; Н 5,28; С1 12,80; N 10,33. $C_{11}H_{15}ClN_2O_4$. Вычислено %: С 48,27; Н 5,52; С1 12,59. N 10,24.

Гидрохлорид 2-метокси-5-нитрофенилацетамидина. Смесь 2,66 г (0,01 моля) гидрохлорида этилового иминоэфира 2-метокси-5-нитрофенилуксусной кислоты и 20 мл этанола насыщают газообразным аммиаком (около 20 мин). Отгоняют спирт досуха, прибавляют 20 мл ацетона и фильтруют. Выход 2,16 г (86,6%), т. пл. 233—234° (из спирта). Найдено %: С 44,19; Н 4,55; С1 14,15; N 16,98. $C_9H_{12}ClN_3O_3$. Вычислено %: С 44,00; Н 4,93; С1 14,43; N 17,10.

Гидрохлорид 3-нитро-4-метоксифенилацетамидина. Синтезирован из гидрохлорида этилового иминоэфира 3-нитро-4-метоксифенилуксусной кислоты аналогично предыдущему. Выход $2,26 \ z \ (91,5\%)$, т. пл. 195—196° (из спирта). Найдено %: С 43,92; Н 4,85; С1 14,78; N 17,25. С $_9$ Н $_{12}$ С18,3О $_3$. Вычислено %: С 44,00; Н 4,93; С1 14,43; N 17,10.

2-Замещенные 4-окси-6-метилпиримидины (Ia-e). Получены из гидрохлоридов соответствующих амидинов, ацетоуксусного эфира и этилата натрия аналогично Іж [10] и перекристаллизованы из этанола (табл. 1).

2-Замещенные 4-хлор-6-метилпиримидины (IIa-е). Получены из Іа-е действием на них хлорокиси фосфора в присутствии диметиланилина аналогично ІІж [10], перекристаллизованы из холодного этанола (табл. 1).

 N_1 -(2-Бензил-6-метилпиримидил-4)-5-фторурацилы (IIIа-ж). Смесь 0,01 моля II, 1,3 z (0,01 моля) 5-фторурацила, 1,38 z (0,01 моля) безводного углекислого калия и 15 мл диметилсульфоксида нагревают при перемешивании до 150°. После охлаждения смесь выливают в 100 мл воды, подкисляют конц. соляной кислотой до рН 3—4, кристаллы фильтруют,

промывают спиртом и эфиром. Перекристаллизовывают из смеси спирт—диоксан, 1:1 (табл. 2).

Таблица 1 2-Замещенные 4-окси- и 4-хлор-6-метилпиримидины Ia-e, IIa-e

Соедине-	68	Т. пл.,	R _f	Найдено, %				Вычислено, %			
	Выход,	°C		С	Н	CI	N	С	Н	Cı	N
la	89	205—206	0,62	59,13	4,66	_	10,71	58,98	4,95	_	10,58
16	84	179—180	0,59	50,24	4,63	_	9,45	50,50	4,24	_	9,06
ls	83	206-207	0,47	56,90	4,50	_	14,82	56,72	4,76	_	15,07
lr	81	168-169	0,65	59,06	4,78	"	10,75	58,98	4,95	_	10,58
Iχ	91	181 182	0,61	50,41	4,60	_	9,27	50,50	4,24	-	9,06
le	93	225 - 226	0,51	56,60	4,46	-	15,51	56,72	4,76	_	15,27
lla	88	74 – 75	0.64	55,53	4,30	25,00	9,62	55,14	4,27	25,04	9,90
116	9)	82—83	0,60	47,67	4,09	_	8.82	47,66	3,69	_	8,61
Пв	76	113-114	0,43	52,98	4.12	11,95	14,40	53,16	4,12	12.07	14,31
llr	79	91—92	0,70	55,27	4,60	24,88	9,58	55,14	4,27	25,04	9,90
Пд	81	84-85	0,69	47,30	3,81		9.05	47,66	3,69	_	8,61
lle	71	111—112	0,56	53,20	4,46	11,88	14,55	53,16	4,12	12,07	14,31
									11/17		

N₂-(2-Бензил-6-метилпиримидил-4)-5-фторурацилы IIIа-ж

Соедине-	Выхол, %	Т. пл., °С	R _f	H	вйдено,	20	Вычислено, %		
				С	Н	N	С	н	N
Illa	58	184—185	0,61	54.33	3,95	14,56	54,19	3,74	14,87
1116	62	175—176	0,64	48,70	3,48	13,55	48,47	3,35	13,30
Шв	64	171—172	0,50	52,81	3,28	17,74	52,72	3,64	18,05
Illr	61	203-204	0,71	54,02	3.93	15,01	54,19	3,74	14,87
Шд	71	224—225	0,72	48,65	3,16	13,26	48,47	3,35	13,30
IIIe	68	233-234	0,60	52,50	3,46	18,32	52,72	3,64	18,05
Шж	66	163-164	0,68	59,71	4.35	16,59	59,65	4,42	16,37

ՊԻՐԻՄԻԴԻՆԻ ԱԾԱՆՑՑԱԼՆԵՐ

L11. ՄԻ ՔԱՆԻ $N_1-(\P$ ԻՐԻՄԻԴԻԼ-4)-5-ՖԹՈՐՈՒՐԱՑԻԼՆԵՐԻ ՍԻՆԹԵԶԸ, ԿԱՌՈՒՑՎԱԾՔԸ ԵՎ ԿԵՆՍԱԲԱՆԱԿԱՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ

վ. Է. ԽԱՉԱՏՐՑԱՆ, Ռ. Գ. ՄԵԼԻՔ-ՕՀԱՆՁԱՆՅԱՆ, վ. Ս. ԺԻՐԶՈՑԱՆ, Ժ. Ս. ՄԱՆՈՒԿՑԱՆ և Ս. Ա. ՊԱՊՈՑԱՆ

Սին Թեզված են մի շարք N₁-(2-տեղակալված-6-մե Թիլպիրիմիդիլ-4)-5ֆթորուրացիլները։ Ուսումնասիրված են նրանց ԻԿ, ՊՄՌ, մասս-սպեկարները և Հակաուռուցքային ազդեցությունը։

Таблица 2

PYRIMIDINE DERIVATIVES

LII. SYNTHESIS, STRUCTURE, AND BIOLOGICAL PROPERTIES OF SOME N₁-(PYRIMIDYL-4)-5-FLUOROURACILS

V. E. KHACHATRIAN, R. G. MELIK-OGANJANIAN, V. S. MIRZOYAN, Zh. S. MANUKIAN and S. A. PAPOYAN

Several N₁-(2-substituted-6-methylpyrimidyl-4)-5-fluorouracils have been synthesized for pharmacological investigation purposes. Their IR, PMR, mass spectra, and antitumour properties have been studied.

ЛИТЕРАТУРА

- 1. Р. Г. Мелик-Оганджанян, Р. Г. Мирзоян, В. Э. Хачатрян, Б. Т. Гарибджанян, Г. М. Степанян, В. М. Охикян, С. А. Папоян, Хим. фарм. ж., 12, 38 (1978).
- 2. Р. Г. Мелик-Оганджанян, В. Э. Хачатрян, В. С. Мирзоян, Арм. хим. ж., 32, 915 (1979).
- 3. J. Harley-Mason, A. H. Jackson, J. Chem. Soc., 1158 (1964).
- 4. А. А. Ароян, М. Л. Ирадян, Р. А. Ароян, Арм. хим. ж., 28, 136 (1975).
- 5. А. А. Ароян, Р. Г. Мелик-Оганджанян, Арм. хнм. ж., 22, 498 (1969).
- 6. А. А. Ароян, М. А. Ирадян, Арм. хим. ж., 23, 185 (1970).
- 7. А. С. Азарян, Ш. А. Аветян, А. А. Ароян, Арм. хнм. ж., 25, 151 (1972).
- 8. М. А. Ирадян, Р. А. Ароян, В. П. Акопян, Л. А. Кцоян, А. А. Ароян, Хим. фарм. ж., 14, 49 (1980).
- В. А. Чернов, Методы экспериментальной химиотерапии, Изд. «Медицина», М., 1971, стр. 357.
- А. А. Ароян, Р. Г. Мелик-Оганджанян, В. Э. Хачатрян, Р. Г. Мирзоян, Арм. хим. ж., 27, 428 (1974).