XXXIII, № 9, 1980

УДК 547.37+547.59 \$

УГЛЕКИСЛЫЙ КАЛИЙ—КАТАЛИЗАТОР ГЕНЕРАЦИИ ЕНОЛЯТ-АНИОНОВ ПРИ АЛКИЛИРОВАНИИ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ

Н. М. МОРЛЯН, Д. С. ХАЧАТРЯН н Ш. О. БАДАНЯН

Армянское отделение ВНИИ «ИРЕА», Ереван Институт органической химин АН Армянской ССР, Ереван

Поступило 28 XII 1979

Показана возможность использования углекислого калия в качестве катализатора' алкилирования карбонильных соединений С-Н кислотами. Табл. 3, библ. ссылок 15.

Известно, что в реакциях енолят-анионов (С-алкилирование, конденсация Кляйзена, реакция Михаэля, альдольная конденсация) первостепенное значение приобретают возможные пути их генерации [1]. Для превращения активного метиленового компонента в соответствующий стабилизированный резонансом енолят-анион обычно применяют сильные основания [1, 2], что зачастую является причиной низких выходов при альдольной и кляйзеновской конденсации вследствие протекания побочных процессов. Кроме того, из-за обратимости реакции, особенно в присутствии сильных оснований, еще более сильно снижается выходпродуктов С-алкилирования. Исходя из указанных факторов, мы сочли целесообразным при реакции С-алкилирования альдегидов и кетонов в качестве генератора карбанионов использовать углекислый калий, который в ряде случаев был успешно применен для аналогичных целей [2—4].

Оказалось, что углекислый калий, действительно, является приемлемым агентом алкилирования алифатических альдегидов I кетонами II, причем реакция протекает при 50—70° и региоселективно по метиленовой группе.

 $R = CH_3$, C_2H_5 , C_3H_7 ; R' = H, CH_3

Аналогичным образом в реакцию как смешанной, так и самоконденсации кротонового типа вступают различные альдегиды IV и V.

Следует отметить, что в этом случае α,β-непредельные альдегиды получаются с высокими выходами.

Далее углекислый калий был использован при углеродалкилировании малонового эфира и ацетилацетона альдегидами алифатического ряда VII по схеме

RCHO
$$\xrightarrow{R'}$$
 \xrightarrow{VIII} $\xrightarrow{R'}$ $\xrightarrow{R'}$ \xrightarrow{Q} $\xrightarrow{R'}$ \xrightarrow{Q} $\xrightarrow{R'}$

 $R = CH_3$, C_2H_5 , C_2H_7 , C_6H_5 ; $R' = CH_3$, OC_2H_5

Надо отметить, что при конденсации бонзальдегида с малоновым эфиром преимущественно получается продукт бис-присоединония по схоме

Наконец, при конденсации масляного альдегида с ацетилацетоном при двойном избытке последнего получается производное циклогексенона по схеме

Экспериментальная часть

ИК спектры записаны на приборе UR-20, опектры ПМР—на «Perkin Elmer» R-12B с рабочей частотой 60 МГц, растворитель—ССІ4,

внутренний эталон ТМС, температура 34°. Индивидуальность продуктов контролировалась ГЖХ на приборе Цвет-4 с катарометром, подвижная фаза—хроматон с 5% SE-30. Длина колонки 2 м, газ-носитель—гелий (30 л/час), температура 100—200°.

Во всех опытах применялись свежеперегнанные исходные соединения.

а, β-Ненасыщенные кетоны III. К смеси 20 г углекислого калия, 20 мл воды и 4 молей соответствующего кетона II при перемешивании на водяной бане при 20—35° прикапывалось 2 моля альдегида I в течение 2 час. В зависимости от строения кетонов реакция проводилась при 50—70° в течение 5 час. Реакционная смесь охлаждалась, отфильтровывалась и перегонялась через эффективный дефлегматор. Температура реакции и константы полученных соединений приведены в табл. 1.

2,3-Ненасыщенные кетоны III

Таблица 1

R	R'	Темпера- тура реак- ции, °С	Выход,	Т. кнн., °С/680 .и.и	n ²⁰	d ²⁰	Литера- турная ссылка
СНз	н	50 - 55	13	119—120	1,4370	0,8568	5,9
C₂H₅	Н	50—55	20	134-137	1,4430	0,8645	5,9
C ₃ H ₇	Н	50 – 55	46	172—174	1,4430	0,8520	5,9
CH ₃	CH ₃	60-70	20	137-138	1,4580	0,9020	6
C ₂ H ₅	CH ₃	60 – 70	22	148-151	1,4430	0.8730	7
C ₃ H ₇	CH₃	60-70	56	169—171	1,4463	0,8555	8

Аналогично проведена конденсация фурфурола с пропионовым альдегидом (табл. 2).

2,3-Непасыщенные альдегиды VI

Таблица 2

R.	R'	Выход,	Т. кип., °С/ <i>жм</i>	n ²⁰	d ²⁰	ИК спектр,	Литера- турная ссылка
СН3	Н	56	102—103,680	1,4365	0,8564	1635, 1680, 2720, 2820, 3030	10
C₂H₅	CH3	80	38-39 25	1,4455	0,8627	1640, 1680, 2720, 2820, 3030	10
C ₃ H ₇	C ₃ H ₅	85	49 – 50/7	1,4550	0,8551	1640, 1685, 2720, 2820, 3030	10
CH ₃	CH ³	62	115 680	1,4470	0,8583	1635, 1685, 2720, 2820, 3030	10
	CH3	75	101—103/10	1,5950	1,1020	755, 1120, 1480, 1560, 1620, 1680, 2720, 2820, 3030-60	11
Call,	C ₃ H ₇	87	68 70/5	1,4505	0,8620	1635, 1680, 2720, 2820, 3030	10

а в-Ненасыщенные альдегиды VI. а) Самоконденсация ацетальдезида и пропионового альдегида. К охлажденному до 10—15° 1 молю альдегида при перемешивании прикапывалось 50 мл 10% водного раствора углекислого калия в течение 1 часа. Эта температура поддерживалась в течение часа, затем реакционная смесь перемешивалась при 60—70° 3 часа, выделившийся органический слой разогнан в вакууме.

Аналогично проведена конденсация ацетальдегида с пропионовым

альдегидом.

6) Самоконденсация масляного альдегида. Смесь 1 моля масляного альдегида и 10 г углекислого калия кипятилась с обратным холодильником при перемешивании 4 часа, промывалась водой, органический слой высушивался над сульфатом магния и перегонялся в вакууме. Получен 2-этил-2-гексен-1-аль, семикарбазон которого плавится при 152° [10].

Аналогично осуществлена конденсация масляного альдегида с ва-

лериановым альдегидом.

Физико-химические констапты полученных соединений приведены в табл. 2.

1,1-Дикарбэтоксиалкены IX ($R=CH_3$, C_2H_5 , C_3H_7 ; $R'=OC_2H_5$). Смесь 1 моля малонового эфира и соответствующего алифатического альдегида в присутствии 5 г углекислого калия перемешивалась при комнатной температуре 3 часа. Температура поддерживалась при 40—50° в течение 3 час., затем реажционная смесь охлаждалась, промывалась водой, органический слой высушивался над сульфатом магния и перегонялся в вакууме.

Конденсация бензальдегида с малоновым эфиром. Смесь 1 моля бензальдегида, 1 моля малонового эфира и 5 г углекислого калия нагревалась на масляной бане 3 часа при $140-150^\circ$, после охлаждения промывалась водой, органический слой высушивался над сульфатом магния и перегонялся. Получено 58 г (23, 4%) 1,1-дикарбэтоксиметилбензилидена, а также 100 г (49, 2%) бензилиден-бис-малонового эфира X. т. кип. $200-205^\circ/2$ мм, d^{20} 1,1185, n^{20} 1,4860 [14]. ИК спектр, ν , см-1: 710, 760, 1180-1290, 1485, 1580, 1740, 3060; Π MP спектр, δ , м. д.: 1,03 и 1,24 два триплета $(12H, 4CH_3, a, J=7,6$ Γ 4), 4,1 м $(12H, 4CH_2+2CH, b+c)$, 2,77 м (1H, CH, d), 7,27 $(5H, C_6H_5, e)$. Физико-химинеские константы и выходы синтезированных диэфиров приведены в табл, 3.

3-Алкилиденпентандион-2,4 IX ($R=CH_3$, C_2H_5 , C_3H_7 ; $R'=CH_3$). Смесь 1 моля ацетилацетона и 1,1 моля соответствующего альдегида в присутствии 5 г углекислого калия перемешивалась 3 часа при 10—15°, затем еще 3 часа при 35—40°. Реакционная смесь промывалась водой, органический слой отделялся, высушивался над сульфатом магния и перегонялся в вакууме. Выходы и физико-химические свойства дикетонов приведены в табл. 3.

4,6-Диацетил-5-пропил-3-метил-2-циклогексен-1-он (XI). Смесь 36 г (0,5 моля) масляного альдегида и 100 г (1 моль) ацетилацетона в присупствии 5 г углекислого калия перемешивалась 3 часа при комнат-

Дикарбонильные соединения 1Х

			No. of the last		كالبانان فالر			
R	R'	Выход,	Т. кнп., °С/ <i>мм</i>	n ²⁰	d ₄ ²⁰	ИК спектр, v, c.u-1	ПМР спектр, в, м. д.	Литера- турная ссылка
CH ₃	C ₂ H ₅ O	35	104-106/15	1.4265	1,0425			12,13
C ₂ H ₅	C ₂ H ₅ O	47	99 - 103/5	1,4410	1,0150			12,13
C ₃ H ₁	C ₂ H ₅ O	52	84 – 85 1	1,4441	0,9981	940, 1220—1285, 1640, 1725, 3030		12.13
C ₆ H ₅	C ₂ H ₅ O	23	131—133/2	1,5270	1,1026	700, 760, 940, 1220—1285, 1480, 1560, 1620, 1720, 3030—3060	1,30 н 1,36 два триплета (6H, 2CH ₃ в CH ₃ CH ₂ O, J=6,67 Ги), 4,31 кв (4H, 2, CH ₂ в CH ₃ CH ₂ O, J=6,67 Ги), 7,26 с (1H, =Ch), 7,42 (5H, C ₆ H ₅)	14
СН₃	СН3	28	64-65/10	1,4621	0,9895	1620, 1660, 1710	1,93 g (3H, CH ₃ в CH ₃ CH=, О J=6,2 Гц), 2,28 с (3H, CH ₃ C), О 2,32 с (3H, CH ₃ C), 6,88 кв (1H,	15
	1.1	2	1000	97	100		=CH в CH ₂ CH=, J=6,2 Гц)	120
C ₂ H ₅	CH3	33	71-72,4	1,4460	0,9911	1620, 1660, 1710, 3030		15
C ₃ H ₇	CH ₃	44	69—70;2	1,4610	0,9810	1620, 1665, 1715, 3030		15

ной температуре, а затем еще 3 часа на водяной бане при 80-90°, охлаждалась, промывалась водой, органический слой высушивался над сульфатом магния и перегонялся в вакууме. Получено 80,5 г (68, 2%) 4,6диацетил-5-пропил-3-метил-2-циклогексен-1-она, т. кип. 170-171°/4 мм. $n_{\rm D}^{20}$ 1,5300, d^{20} 1,0884. Найдено $^{0}/_{0}$: С 71,56; Н 7,94. $C_{14}H_{20}O_{3}$. Вычислено $^{0}/_{0}$: С 71,77; Н 8,03. ИК спектр, у, см⁻¹: 1615 (С=С сопр. с карбонильной группой), 1660 (С=О сопр. с кратной связью), 1715 (С=О в ацетильной группе), 3030 (=СН). ПМР спектр, с, м. д.: 0,97 м (3H, CH2, а, уширенный), 1,50 м (4H, 2CH2, b, широкий), 2,02 д (3H, CH₃, f, $J=1.5 \Gamma \mu$), 2,10 c (3H, CH₃, d), 2,14 c (3H, CH₃, e), 2,4 м (1H, CH, h), 2,95 м (2H, 2CH, C), 6,01 кв (1H, =CH, g, $J=1,5 \Gamma \mu$).

ԿԱԼԻՈՒՄԻ ԿԱՐՔՈՆԱՏԸ ՈՐՊԵՍ ԵՆՈԼՅԱՏ-ԱՆԻՈՆՆԵՐԻ ԳԵՆԵՐԱՑՄԱՆ ԿԱՏԱԼԻՉԱՏՈՐ ԿԱՐԲՈՆԻԼԱՅԻՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ԱԼԿԻԼՄԱՆ **ԺԱՄԱՆԱԿ**

v. v. varisuv, v. v. buguspsuv L c. 2. paravsav

Ուսումնասիրված է ալդեհիդների C-ալկիլումը ալիֆատիկ ալդեհիդներով, կետոններով, ացետիլացետոնով և մալոնաԹԹվական էսԹերով։ Ցույց է որված, որ այս ռեակցիաներում որպես կատալիզատոր Հաջողությամբ կարելի է կիրառել կալիումի կարբոնատր։

POTASSIUM CARBONATE AS A CATALYST GENERATING ENOLATE ANIONS IN ALKYLATION REACTIONS OF CARBONYL COMPOUNDS

N. M. MORLIAN, D. S. KHACHATRIAN and Sh. O. BADANIAN

C-Alkylation of aldehydes with aliphatic aldehydes, ketones, acetylacetone and malonates has been investigated and it has been shown that potassium carbonate may be used successfully as a convenient catalyst in such reactions.

ЛИТЕРАТУРА

- 1. О. Хаузе, Усп. хим., 38, 1874 (1969).
- 2. A. T. Nielsen, W. J. Houllhan, Org. Reaction, 16, 2 (1968).
- 3. Н. М. Морлян, Д. С. Хачатрян, Ш. О. Баданян, Арм. хим. ж., 31, 874 (1978).
- 4. Н. М. Морлян, Д. С Хачатрян, Ш. О. Баданян, Арм. хим. ж., 31, 866 (1978).
- 5. L. P. Kyrides, J. Am. Chem. Soc., 55, 3431 (1933).
- 6. G. F. Hennton, R. B. Davis, D. E. Maloney, J. Am. Chem. Soc., 71, 2813 (1949).
- 7. Erigard, Eluchaire, Ann. Chim., 9, 11 (1928).
- 8. E. N. Eccott, R. P. Linstead, J. Am. Chem. Soc., 1930, 914.
- 9. E. R. Alexander, G. R. Cerlor, J. Am. Chem. Soc., 73, 2721 (1951).
- 10. M. B. Green, W. J. Hickinbottom, J. Chem. Soc., 1957, 3262.
- 11. Н. И. Шуйкин, И. Ф. Белский, ДАН СССР, 137, 622 (1961).
- 12. E. Knoevenagel, R. Brunswig, Ber., 35, 2179 (1902).
- 13. E. B. Stanley. R. P. Linstead, J. Chem. Soc., 1931, 740.
- 14. J. Vogel, J. Chem. Soc., 1928, 2010.
- 15. M. E. McEntee, A. R. Pinder, J. Chem. Soc., 1957, 4419.