XXXIII, № 7, 1980

УДК 547.772.07(088.8)

СИНТЕЗ И ПРЕВРАЩЕНИЯ 1-(2,3-ЭПОКСИПРОПИЛ) ПИРАЗОЛОВ

Э. Г. ДАРБИНЯН, М. С. МАЦОЯН, ДЕТЛЕФ ИОЕЛЬ и А. А. САЛКЯН Институт органической химии АН Армянской ССР, Ереван Поступило 25 IV 1980

Осуществлен синтез 1-(2,3-эпоксипропил) пиразолов и изучены некоторые химические превращения последних.

Табл. 3, библ, ссылок 7.

Несмотря на интенсивное развитие химии эпоксидных соединений [1, 2], в настоящее время имеется мало сведений о синтезе и свойствах α-окисей с гетероциклическими заместителями. Между тем исследование свойств таких соединений может расширить наши представления о влиянии гетероциклической группировки на реакционную способность α-окисного кольца, а также привести к новым продуктам с интересными свойствами.

Настоящая работа посвящена изучению закономерностей синтеза 1-(2,3-эпожсипропил) пиразолов и нежоторым химическим превращениям последних.

Синтез глицидилпиразолов II осуществлен взаимодействием пиразола (Ia), 3(5)-метилпиразола (Iб), 3,5-диметилпиразола (Iв) и 3(5)метил-4-бромпиразола (Iг) с эпихлоргидрином (ЭХГ) при комнатной температуре в присутствии едкого кали.

a. R=R'=X=H; 6. R=X=H, $R'=CH_3$; a. $R=R'=CH_3$, X=H; r. R=H, $R'=CH_3$, X=Br.

Было найдено, что в условиях реакции неизбежно образуются также бис-1-(пиразолил) пропанолы типа III. При этом, как видно из дапных табл. 1, увеличение концентрации ЭХГ в реакционной среде приводит к повышению выхода глицидилпиразолов II, достигающего 80— 83% при мольном соотношении компонентов 1:10, а образование биспиразолов III уменьшается до 9—10%.

Таблица 1 Зависимость выхода глицидилинразолов от содержания ЭХГ: количество исходиых пиразолов 16, в 0,1 моля, едкого кали 0.1 моля, температура реакции 20°, продолжительность процесса 2 часа

ЭХГ,	Выход, %		эхг.	Выход. %		
	116	1116	моли	Пв	Шв	
0,15	30,4	43.6	0,2	39,4	40,5	
0,30	50,7	30,9	0,3	52.6	31,5	
0,50	60,8	22.7	0,4	55,2	26,5	
0,80	76.8	11,8	0.5	62,8	24.0	
1,00	80.0	12,0	1,0	83,2	9,0	

Как и следовало ожидать, в случае 3(5)-метилпиразола, вследствие таутомерного равновесия, при реажции с эпихлоргидрином во всех случаях образуются два изомерных эпожсипродукта—1-(2,3-эпоксипропил)-3-метилпиразол в 1-(2,3-эпоксипропил)-5-метилпиразол в весовом соотношении 60:40. Изомеры были разделены путем газожидкостной препаративной хроматографии, а структура доказана методом ПМР (табл. 2).

Химические сдвиги протонов 3, м. д.

Таблица 2

Соединение	CH ₃	-CH ₂ CH—CH ₂	Кольцевые протоны
H CH ₃ CH ₃ CH ₂ CH ₃	2,19 (3H, c)	2,37 (1H, дд) 2,69 (1H, дд) 3,16 (1H, м) 4,04 (1H, м) 4,17 (1H, м)	5,90 (1H, д) 7,22 (1H, д)
H H H CH ₃ CH ₂ CH—CH ₂	2,37 (3H, c)	2.32 (1H, дд) 2,69 (1H, дд) 3,18 (1H, ы) 4,13 (1H, ы) 4,22 (1H, ы)	5,86 (1H, д) 7,18 (1H, д)

Интересно отметить, что изомеры в аналогичном соотношении образуются также при реакции Іг с ЭХГ.

Отнесение химических сдвигов сигналов от кольцевых протонов и протонов метильных групп произведено на основании работ [3, 4].

В ИК спектрах полученных эпоксипиразолов II имеются полосы поглощения при 1520, 1545 $c m^{-1}$, соответствующие колебаниям пиразольного цикла. Эпоксыдная группа жарактеризуется колебаниями в области 850, 920, 1225 $c m^{-1}$.

Изучены некоторые химические превращения полученных эпоксипиразолов II, протекающие с раскрытием α-окисного кольца, в частности, с помощью аминов. Оказалось, что присоединение аминов к эпоксипиразолам протекает легко при комнатной температуре с выделением тепла; при этом с высокими выходами образуются аминоопирты IV пиразольного ряда (табл. 3).

Сиптезпрованные соединения IV

Таблица 3

х	R	R'	R"	R‴	Т. кип., 'С/.и.м	. n ²⁰	d ²⁰ ₄	Hafigeno,	Вычислено, N %	Выход, %
н	н	Н	C₂H₅	C ₂ H ₅	91/1	1,4860	1,006	21,70	21,34	87.7
Н	Н	Н	Н	C ₄ H ₉	116/1	1,4933	1,0265	21.45	21,34	81,6
Н	Н	Н	(CH ₂)4O		131/1	1,5141	1,1367	20,12	19.88	88.4
H	Н	Н	(CH ₂) ₅		114/1	1,5130	1,0750		20,69	90.3
H*	Н	CH ₃	Н	Н	133/1	1,5120	_		27,06	59.3
H*	Н	CH ₃	Н	Cally	117/1	1,4960	1,0318			80.5
H*	н	CH ₃	C ₂ H ₅	C ₂ H ₅	100/1	1,4878	1,0017		19,88	91,9
H*	Н	CH ₃	Н	C ₄ H ₉	129/1	1,4930	1 0144	20,40	19.88	80,0
H*	н	CH ₃	(CH ₂) ₄ O		141/1	1,5135			18,64	85.0
H*	Н	CH ₃	(CH ₂) ₅		122/1	1,5100	1,0540	18,82	18,76	85,2
H*	н	CH ₃	CH2CH=CH2CH2CH=CH2		124/1	1,5040	1,0102			82.8
Н	СН,	CH3	Н	Н	122/2		63—64°	_	0.00	38,0
Н	CH3	CH3	Н	C ₄ H _e	132/2		0.9964			83,0
Н	CH3	CH ₃	C ₂ H _B	C ₂ H ₅	115/2	1,4888	0,9835	18,61	18,64	85.7
Br*	Н	CH ₃	C ₂ H ₅	C ₂ H ₅	123/1	1,5160	1,2718		14.48	48,3
Br*	Н	CH,	Н	C ₄ H ₉	188/5				14, 48	95,0
Br*	Н	CH3	(CH ₂) ₄ O		190/1	1,5375				68,0
Br*	Н	CH ₃	(CH ₂) ₅		162/1	1,5358		13,95		96.0

^{*} Получены смеси 1,3- и 1,5-изомеров.

В полученных аминоспиртах IV пиразольное кольцо характеризуется поглощением в области 1520, 1540 см⁻¹.

Экспериментальная часть

Хроматографический анализ осуществлен на приборе «Хром-З». Колопка 150 см, твердая фаза хемосорб W, жидкая фаза 20% NPGS, температура термостата 150°, скорость № 2,1, Н₂ 2,0, воздуха 22 л/ч. Препаративная ГЖХ изомерных 1-(2,3-эпоксипропил)-З-метил- и 1-(2,3-эпоксипропил)-5-метилпиразолов проведена на хроматографе «Fa. Varian» при 180°. Колонка 5 м × 10 мм с 15% карбовакса М20 на кизельгуре. ИК спектры сняты на приборе UR-20 в таблетках с КВг или в микрослое, а ПМР спектры—на спектрометре «Регкіп-ЕІтег» с рабочей частотой 60 МГц в ССІ4. внутренний стандарт ГМДС.

Пиразол, 3,5-диметиллиразол и 3(5)-метил-4-бромпиразол получали по методикам [5—7], 3(5)-метилпиразол получен на опытной установ-ке Северодонецкого филиала ГИАП.

1-(2,3-Эпоксипропил) пиразол (IIa). К смеси $68\ z$ ($1\$ моль) пиразола и $462,5\ z$ ($5\$ молей) ЭХГ при перемешивании прибавляли $56\ z$ ($1\$ моль) порошкообразного едкого кали в три приема порциями $20+20+16\ z$ с интервалом между каждым прибавлением $30\$ мин. Смесь перемешивали при комнатной температуре еще $30\$ мин. Реакционную смесь отфильтровывали от образовавшегося хлористого калия и после удаления избытка ЭХГ остаток разгоняли в вакууме. Получено $85,4\ z$ ($69^{6}/_{0}$) сосдинения 11a, т. кип. $62^{\circ}/1\$ мм, 10° 1,4958, 10° 1,1310. Найдено $10^{\circ}/_{0}$: N 10° N 1

Изомерные 1-(2,3-эпоксипропил)-3-метил- и 1-(2,3-эпоксипропил)-5-метилпиразолы (II6). Аналогичным образом из 82 г (1 моль) 3(5)-метилпиразола, 925 г (10 молей) ЭХГ и 56 г (1 моль) едкого кали получено 111 г ($80^{\circ}/_{\circ}$) смеси изомерных II6, т. кип. $79^{\circ}/_{\circ}1$ мм, n_{10}° 1,4928, d_{10}° 1,0925. Найдено $0/_{\circ}$: N 20,50. С₇Н₁₀N₂О. Вычислено $0/_{\circ}$: N 20,26. По данным ГЖХ, соотношение изомеров в смеси составляет 60:40, соответственно.

Одновременно было получено 13,8 г (12%) III6 в виде белых кристалов с т. пл. 62—64°. Найдено %:N 25,89. С₁₁ $H_{16}N_4O$. Вычислено %:N 25,55. ИК спектр, с.и-1: 1525 и 1545 (пиразольное кольцо), 3230 (ОН группа).

1-(2,3-3 поксипропил)-3,5-диметилпиразол (IIв). Аналогично из 96 г (1 моль) 3,5-диметилпиразола, 462,5 г (5 молей) ЭХГ и 56 г (1 моль) едкого кали получено 106,5 г (70%) соединения IIв, т. кип. 76°/1 мм, n_D^{20} 1,4940, d_4^{20} 1,0650. Найдено %: N 18,61. $C_8H_{12}N_2O$. Вычислено %: N 18,39.

Получено также 30,4 г (24%) IIIв в виде белых кристаллов с т. пл. 106—107°. Найдено %: N 22,16. С₁₈Н₂₀N₄O. Вычислено %: N 22,55.

1-(2,3-3поксипропил)-3-метил-4-бром- и 1-(2,3-9поксипропил)-5-метил-4-бромпиразолы (IIг). Аналогично из 30 г (0,18 моля) 3(5)-метил-4-бромпиразола, 85,7 г (0,92 моля) ЭХГ и 10 г (0,18 моля) едкого кали получено 24 г (60%) смеси изомерных IIг, т. кип. 121% 3 м.и. n_{20}^{20} 1,5318, d_{20}^{20} 1,5000. Найдено %: N 13,17. $C_7H_8N_2OBr$. Вычислено %: N 12,80. По данным ГЖХ, соотношение изомеров в смеси составляет 60:4%.

Аминоспирты пиразольного ряда (IV). Смесь 0,1 моля глицидилпиразолов и 0,1 моля соответствующего амина нагревали на водяной бане 2—3 часа в присутствии 0,1 мл воды. В случае аммиака и первичных аминов использовали 3-кратный избыток последних. Свойства полученных аминоспиртов IV приведены в табл. 3.

1–(2,3–ԷՊՕՔՍԻՊՐՈՊԻԼ)ՊԻՐԱԶՈԼՆԵՐԻ ՍԻՆԹԵԶԸ ԵՎ ՓՈԽԱՐԿՈՒՄՆԵՐԸ

է, Գ. ԴԱՐՐԻՆՑԱՆ, Մ. Ս. ՄԱՑՈՑԱՆ, ԴԵՏԼԵՖ ԻՈԵԼ և Հ. Ա. ՍԱՀԱԿՅԱՆ

Իրականացված է 1-(2,3-էպօքսիպրոպիլ)պիրաղոլների սինքեզը և ուսումնասիրված են վերջիններիս մի քանի քիմիական փոխարկումները։

SYNTHESIS AND SOME TRANSFORMATIONS OF 1-(2,3-EPOXYPROPYL)PYRAZOLES

E. G. DARBINIAN, M. S. MATSOYAN, DETLEF IOEL and A. A. SAAKIAN

The synthesis of 1-(2,3-epoxypropyl)pyrazoles has been realized and some of their chemical transformations have been investigated.

ЛИТЕРАТУРА

- 1. М. С. Малиновский, Окисн олефинов и их производные, Госхимиздат, М., 1961.
- Дж. Фурукава, Т. Саегуса, Полимеризация альдегидов и окисей, Изд. «Мир» М., 1969.
- 3. В. Ф. Быстров, И. И. Грандберг, Г. И. Шарова. ЖОХ, 35, 293 (1965).
- 4. D. E. Butler, S. Alexander, J. Org. Chem., 37, 215 (1972).
- 5. R. G. Jones, J. Am. Chem. Soc., 71, 3394 (1949).
- 6. Синтезы органических препаратов, И.Л., М., 1953, т. 4, стр. 189.
- 7. K. Auwers, K. Bahr, J. prakt. Chem., 116, 85 (1927).