2ЦЗЧЦЧЦЪ ₽ԻՄԻЦЧЦЪ ЦՄИЦԳԻР АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXXIII, № 10, 1980

УДК 541.127:547.462.3

КИНЕТИКА И МЕХАНИЗМ РЕАКЦИИ ЭПОКСИДИРОВАНИЯ МАЛЕИНОВОЙ КИСЛОТЫ ПЕРЕКИСЬЮ ВОДОРОДА В ПРИСУТСТВИИ ВОЛЬФРАМОВОЙ КИСЛОТЫ И ЕЕ СОЛЕЙ

Г. В. БАДАСЯН, С. М. ГАБРИЕЛЯН, Г. Л. КАМАЛОВ и Ю. А. ТРЕГЕР

Ереванский завод химических реактивов Одесский государственный университет

Поступило 26 XI 1979

Проведено сопоставительное изучение эпоксидирования малиеновой кислоты перекисью водорода в присутствии вольфрамовой кислоты, пентавольфрамата аммония и вольфрамата натрия Показано, что начальные скорости реакции имеют первый порядок по каждому из компонентов, а параметры активации остаются практически постоянными, независимо от концентрации перекиси водорода и катализатора,

Полученные близкие значения активационных параметров для разных катализаторов позволили предложить общий механизм эпоксидирования малеиновой кислоты перекисью водорода в присутствии вольфрамовой кислоты и ее солей. По своей активности исследованные катализаторы располагаются в ряд:

 $Na_{2}WO_{4} > H_{2}WO_{4} > (NH_{4})_{4}W_{5}O_{17}$

Предложен механизм реакции. Рис. 2, табл. 3, библ. ссылок 6.

В продолжение наших исследований, посвященных рассмотрению количественных закономерностей промышленного процеоса получения синтетической винной кислоты [1], мы провели сопоставительное изучение кинетических особенностей реакции эпоксидирования маленновой кислоты (МК) перекисью водорода в присутствии вольфрамовой кислоты, вольфрамата натрия и пентавольфрамата аммония.

Ранее нами сообщалось [2], что начальные скорости реакции эпоксидирования МК перекисью водорода в присутствии вольфрамата натрия имеют первый порядок по каждому из компонентов, а параметры активации остаются практически постоянными независимо от концентрации перекиси водорода и катализатора.

На основания результатов работ [3, 4] и полученных нами кинетических параметров изучаемого процесса [2] мы пришли к выводу, что переходное состояние (ПС) реажции эпоксидирования в присупствии соединений переходных металлов высшей степени окисления может быть предположительно представлено в виде своеобразного гримолекулярного пакета хелатного характера.

В этой связи представлялось интересным рассмотреть зависимость кинетических характеристик изучаемого процесса и глубины превращения (а) МК от характера катиона вольфраматного катализатора.

Экспериментальная часть

Использованные в работе маленновый ангидрид, 30% перекись водорода, вольфрамовая кислота, пентавольфрамат натрия являлись продажными реактивами марки «ч.». Кинетические измерения и их обрабогка проводились аналогично [2].

Результаты и их обсуждение

Кинетические кривые, аналогичные приведенным в нашей предыдущей работе [2], хорошо описываются уравнением для необратимых реакций первого порядка по компонентам. Аналогично [2] в случае вольфрамовой кислоты и пентавольфрамата аммония наблюдается линейная зависимость начальных скоростей реакции (рис. 1, 2) от концентрации перекиси водорода и катализатора.

Рис. 1. Зависимость начальных скоростей эпоксидирования малеиновой кислоты от концентрации перекиси водорода (б) и вольфрамовой кислоты (а). 1. 2 – $[H_2O_2]=3,59$ и 3,00 (а), соответственно при 75°, 3. 4 — то же при 65°; 5. 6—то же при 45°; 1. 5— $[H_2WO_4]\cdot 10^3=3,12$ и 1,56 (б) соответственно при 75°; 2. 4 — то же при 65°; 3. 6 — то же при 45°.

Таким образом, для трех рассмотренных катализаторов справедливо выражение,

$$W_0 = K_{s\phi} \cdot [H_2O_2] \cdot [катал.] \cdot [MK]$$

Величины К., были вычислены из экспериментально определенных констант скоростей

$$K_{s\phi} = \frac{\lg \alpha}{[H_2O_3] \cdot [\kappa \tan \alpha n.]}$$

где tg a-тангенс угла касательной в начальной точке кривой конверсии МК.

Кинетическое изучение реакций проводилось при некотором избытке перекиси водорода, при котором наблюдалась независимость найденных значений K_{эф} от концентрации H₂O₂, для уменьшения роли термического и каталитического распада перекиси водорода.

Рис. 2. Зависимость начальных скоростей эпоксидирования маленновой кислоты от концентрации перекиси водорода и вольфрамата аммония. 1, 2 — [H₂O₂] = 3,59 и 3,00 (а) соответственно при 75°; 3, 4 — то же при 65°; 5, 6 — то же при 45°; 1, 5 — [(NH₄), W₂O₄] 10³ — 6,16 и 3,08 (б), соответственно при 75°; 2, 4 — то же при 65°; 3, 6 — то же при 45°.

Как видно из табл. 1—3, скорость и глубина превращения МК в заметной степени определяются природой катализаторов, которые по активности можно расположить в следующий ряд:

$$Na_{2}WO_{4} > H_{2}WO_{4} > (NH_{4})_{4}W_{5}O_{17}$$

Полученные из температурных зависимостей констант скоростей реакций значения активационных параметров для различных катализаторов имеют близкие между собой значения, а также близкие с таковыми, приведенными в работах [3—6]. Из этого можно сделать вывод, что процесс эпоксидирования маленновой кислоты перекисью водорода для разных катализаторов, рассмотренных в наших условиях, идет, по-видимому, по одному и тому же механизму, идентичному приведенным в работах [5, 6]. По аналогии с [5, 6] механизм рассматриваемой реакции может быть представлен следующим образом:

$$W^{6+} + H_2O_2 \xrightarrow[K_2]{K_1} W^{6+} \longleftarrow \begin{array}{c} 0 \\ -0 \\ H \\ H \end{array}$$

1.1

(1)

$$W^{6+} \longleftarrow O \begin{pmatrix} H \\ H \end{pmatrix} + H_2O_2 \xrightarrow{K_4} W^{6+} \longleftarrow O \stackrel{I}{\longrightarrow} O \stackrel{I}{\longrightarrow} H_2O \quad (3)$$

Таблица 1

Эффективные константы скорости, глубина превращения и параметры активации реакции эпоксидирования малеиновой кислоты в присутствии вольфрамовой кислоты

[H ₂ O ₅ H]	10, wol.	Кэф·103, сек-1		(a, ⁰ /")	<i>۵Н</i> + ,	۵S*,	aron/
		45°	65°	75°	ккал/моль	э. е.	AG +.
3,59	1,56	0,82 (14)	2,75 (39)	4,5 (46)	11,8±0,3	29,3±0,5	21,6
3,59	1,96	0,83 (18)	2.7 (46)	4.55 (65)	$11,2\pm0,2$	28,8±1,2	21,8
3,59	2,36	0,82 (20)	2,73 (50)	4.37 (70)	11,6±0,3	29,7±1,0	21,5
3,59	2,76	0,82 (28)	2,7 (68)	4.4 (75)	11,8±0,2	$30,1 \pm 1,2$	21,8
3,59	3,12	0,83 (27)	2,74 (64)	4,46 (80)	11,5±0,3	29,6±0,7	21,4
3,26	1,56	0,81 (12)	2,6 (35)	4,21 (50)	11,4±0,1	$30,6 \pm 1,3$	21,6
3,26	1,96	0,8 (15)	2.6 (42)	4.2 (57)	11,4±0,2	29.8 ± 1.2	21,3
3,26	2,36	0,78 (19)	2,62 (48)	4,19 (65)	11,4±0,3	$30,5 \pm 1,1$	21,5
3,26	2,76	0,79 (20)	2,57 (53)	4,2 (71)	11,7±0,2	$30,1 \pm 1,0$	21,7
3,26	3,12	0,79 (25)	2,6 (60)	4,25 (79)	11,4±0,5	$30,7\pm 2,0$	21,4
3,11	1,56	0,76 (11)	2,54 (31)	4,24 (48)	$11,2\pm0,3$	$29,3 \pm 1,2$	21,0
3,11	1,96	0,75 (12)	2,51 (36)	4,13 (57)	11.5±0,5	$30,1\pm1,2$	21,5
3,11	2,36	0,75 (17)	2,52 (43)	4,14 (59)	11.9±0,5	$30,3 \pm 1,2$	21,9
3,11	2,76	0,76 (20)	2,55 (48)	4,03 (66)	$12,1\pm0,2$	$28,9 \pm 0,9$	22,7
3,11	3,12	0,76 (23)	2,51 (54)	4,13 (75)	11,3±0,1	$29,6 \pm 1,0$	21,2
3,00	1,56	0,73 (11)	2,41 (36)	3,91 (47)	11,8 ± 0,5	29,8±0,8	21,8
3,00	1,96	0,73 (14)	2,38 (38)	3,9 (55)	$12,1\pm0,2$	$29,5 \pm 1,8$	21,9
3,00	2,36	0,71 (16)	2,4 (49)	3,81 (61)	11,3±0,1	$30,1 \pm 1,3$	21,3
3,00	2,76	0,72 (22)	2,35 (50)	3,86 (67)	12,00 ± 0,5	$28,7\pm 2.0$	21,4
3,00	3,12	0,73 (25)	2,38 (55)	3,89 (73)	11,7 ± 0,4	29.1 ± 1.4	21,4
	the same same	and the second second			the second se		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

Таблица 2

Эффективные константы скорости, глубина превращения и нараметры активации реакции эпоксидирования маленновой кислоты в присутствии вольфрамата аммония

B lipitey terbilit were 11							
2	011] -	K=+	$K_{P\Phi} \cdot 10^3$, $ce\kappa^{-1}$ (a, $0/0$)			۵S ⁺ .	qVI
["O ^t H	"NH4)*W	45°	65°	75°	ккал/моль	э. е.	ΔG [*] , KKAA/.N
3,59 3,59 3,59 3,59 3,59 3,26 3,26 3,26 3,26 3,26 3,26 3,26 3,26	Z.) 3,08 3,88 4,65 5,45 6,16 3,08 3,88 4,65 5,45 6,16 3,08 3,88 4,65 5,45 6,16 3,08 3,88 4,65 5,45 6,16 3,08 4,65 5,45 6,16 3,08 4,65 5,45 6,16 3,08	0,44 (14) 0,45 (20) 0,44 (22) 0,44 (25) 0,45 (27) 0,44 (13) 0,42 (16) 0,43 (18) 0,42 (21) 0,43 (25) 0,41 (12) 0,40 (18) 0,41 (19) 0,41 (21) 0,42 (23) 0 38 (10,5)	1,51 (40) 1,52 (48) 1,51 (55) 1,49 (63) 1,53 (67) 1,47 (47) 1,43 (49) 1,45 (51) 1,44 (57) 1,49 (63) 1,41 (37) 1,43 (46) 1,45 (50) 1,40 (51) 1,41 (58) 1,26 (32)	2,45 (58) 2,47 (69) 2,58 (75) 2,46 (80) 2,49 (82) 2,45 (53) 2,32 (58) 2,36 (62) 2,34 (74) 2,36 (78) 2,21 (50) 2,27 (60) 2,29 (64) 2,31 (72) 2,30 (76) 2,17 (46)	$11,5\pm0,511,3\pm0,911,5\pm0,211,4\pm0,611,5\pm0,211,3\pm0,611,4\pm0,411,3\pm0,411,4\pm0,411,3\pm0,411,4\pm0,511,2\pm0,611,5\pm0,311,5\pm0,211,3\pm0,411,2\pm0,511,4\pm0,3$	$31,2\pm1,0$ $30,4\pm1,4$ $29,8\pm2$ $32,3\pm3,5$ $31,1\pm1,6$ $30,9\pm0,8$ $31,4\pm0,8$ $30,7\pm0,9$ $31,1\pm1,8$ $30,2\pm1,1$ $32,2\pm1,1$ $32,2\pm1,7$ $31,9\pm1,2$ $32,2\pm1,7$ $31,7\pm1,2$ $31,5\pm1,5$ $30,8\pm1,3$	22,0 23,1 20,5 22,2 21,9 21,4 21,9 21,6 21,8 21,3 22,2 22,0 22,3 21,9 21,7 21,7
3,00 3,00 3,00 3,00 3,00	3,88 4,65 5,45 6,16	0,38 (16) 0,39 (17) 0,39 (19) 0,40 (20)	1,28 (38) 1,29 (43) 1,32 (51) 3'34 (58)	2, 12 (56) 2,14 (62) 2,17 (65) 2,17 (74)	$11,6\pm 0,2 \\ 11,5\pm 0,7 \\ 11,6\pm 0.6 \\ 11,4\pm 0,4$	$31,1 \pm 1,5 \\ 30,7 \pm 1,4 \\ 31,4 \pm 1,2 \\ 31,6 \pm 0,9$	22,0 21,9 22,1 22,0

Поскольку стадия (2) при постоянных концентрациях перекиси водорода и катализатора лимитирует скорость всего процесса, можно считать, что определяемые из экспериментальных данных эффективные константы скорости реакции, представленные в табл. 1—3, эквивалентны соответствующим соотношениям констант скоростей элементарных стадий процесса.

$$K_{\mathsf{s}\phi} = K_{\mathsf{s}} \cdot \frac{K_1 \cdot K_3}{K_2 \cdot K_4}$$

Таблица З

Эффективные константы скорости, глубина превращения и параметры активации реакции эпоксидирования малеиновой кислоты в присутствии вольфрамата натоия

[H ₂ O ₅]	·Itow Enli	K _{9φ} 10 ³ , ceκ ⁻¹ (α, ⁰ / ₀)			ΔH .	45	qVON
		45°	65°	75°	ккал/моль	э. е.	∆G ^{\$} , ккал/
3,59	1,3	1,54 (19)	5,0 (54)	8,53 (74)	11,8±1,4	$31,0 \pm 3,0$	22,2
3,59	1,7	1,49 (24)	5,16 (64)	8,21 (80)	$11,6 \pm 1,5$	29.3 ± 1	21,4
-3, 59	2,0	1,53 (32)	5,24 (70)	8,4 (86)	$11,5\pm 1$	30.6 ± 1	21,7
3,59	2,3	1,59 (35)	5,33 (74)	8.67 (91)	11.6±0,3	$30,0 \pm 1$	21,6
3,59	2,6	1,61 (40)	5.37 (80)	8,76 (93)	11,6±0,7	29.6 ± 1.0	21,4
3,26	1,3	1,46 (20)	5,02 (52)	8,07 (70)	11,6±0,8	$30,1\pm0,7$	21,6
3,26	1.7	1,43 (22)	4,8 (57)	7.76 (74)	11,6±0,6	31,3±1	22,1
3,26	2,0	1,45 (27)	4,87 (66)	8,0 (83)	11,4±0.6	$31,5 \pm 0,6$	21,9
3,26	2,3	1,52 (31)	5,08 (72)	8,31 (87)	11.5±0,7	$30,4 \pm 0,7$	21,7
3,26	2,6	1,53 (35)	5,12 (74)	8,37 (90)	11,4±09	30,7±0,9	21,7
3,11	1,3	1,41 (15)	4,77 (46)	7,67 (64)	17 ±0,6	$29,3 \pm 0,6$	21,6
3,11	1,7	1,38 (20)	4,6 (54)	7,55 (73)	11,5±0,5	$30,2\pm1,1$	21,4
3,11	2,0	1,41 (25)	4,7 (62)	7,73 (79)	11,6±0,6	$30,6 \pm 0,9$	21,7
3,11	2,3	1,47 (28)	4,9 (69)	8,0 (84)	$11,3 \pm 0,3$	$31,1 \pm 1,0$	22,1
3,11	2,6	1,48 (33)	4,96 (73)	8,11 (88)	11,6±0,4	$30,3 \pm 1,8$	21,7
2,99	1,3	1,39 (14)	4,43 (43)	7,54 (62)	11,6±6,7	$30,7\pm 2,5$	21,9
2,99	1,7	1,32 (20)	4,2 (50)	7,24 (69)	11,7±0,8	$30,1\pm0.9$	22,5
2,99	2,0	1,35 (24)	4,52 (60)	7,4 (72)	11.6±0,7	$29,3 \pm 0,8$	21,5
2,99	2,3	1,39 (26)	4,68 (65)	7,71 (82)	$11,7 \pm 0,5$	$28,8 \pm 1,2$	21,3
2.99	2,6	1,42 (29)	4,73 (68)	7,74 (84)	$11,3 \pm 0,6$	29.0 ± 0.8	21,0
			1	10 Mar		100 million (100 m	

ደቦԱԾՆԻ ՊԵՐՕՔՍԻԴՈՎ ՄԱԼԵԻՆԱԹԹՎԻ ԷՊՕՔՍԻԴԱՑՄԱՆ ԿԻՆԵՏԻԿԱՆ ԵՎ ՄԵԽԱՆԻԶՄԸ ՎՈԼՖՐԱՄԱԹԹՎԻ ԵՎ ՆՐԱ ԱՂԵՐԻ ՆԵՐԿԱՅՈՒԹՅԱՄԲ

2. 4. ԲԱԴԱՍՑԱՆ, Ս. Մ. ԳԱԲՐԻԵԼՑԱՆ, Գ. Լ. ԿԱՄԱԼՈՎ և Ցու. Ա. ՏՐԵԳԵՐ

Կատարված է մալեինաԹԹվի էպօջսիդացման համեմատական ուսում-Նասիրումը ջրածնի պերօքսիդով, վոլֆրամաԹԹվի, ամոնիումի վոլֆրամատի և նատրիումի վոլֆրամատի ներկայուԹյամբ։

8ույց է տրված, որ ռեակցիայի սկզբնական արագությունը կոմպոնենտո-Ներից յուրաքանչյուրի նկատմամբ առաջին կարգի է, իսկ ակտիվացման պարամետրերը գործնականորեն մնում են հաստատուն, անկախ ջրածնի պերօքսիդի և կատալիղատորի կոնցենտրացիայից և վերջինիս բնույթից։

Ըստ իրենց ակտիվության, ուսումնասիրված կատալիղատորները դասավորվում են այս շարքով

$Na_2WO_4 > H_2WO_4 > (NH_4)_4W_5O_{17}$

THE KINETICS AND MECHANISMS OF THE EPOXIDATION REACTION OF MALEIC ACID WITH HYDROGEN PEROXIDE IN THE PRESENCE OF TUNGSTIC ACID AND ITS SALTS

G. V. BADASSIAN, S. M. GABRIELIAN, G. L. KAMALOV and Yu, A. TREGER

A comparative research of epoxidation of maleic acid with hydrogen peroxide in the presence of tungstic acid, ammonium pentatungstate, and sodium tungstate has been carried out. It has been shown that the initial reaction rates are of the first order with regard to each component, while the activation parameters remain practically constant irrespective of the hydrogen peroxide concentration, the catalyst and its nature. The catalysts investigated are arranged in the following order Na₂WO₄>H₂WO₆> >(NH₄)₄W₈O₁₇, according to their activity.

Л И Т Е Р А Т У Р А

- 1. Г. М. Гринберг, С. М. Габриелян, М. К. Мардоян, Н. М. Морлян, Авт. свид. СССР № 322043, 1969, Бюлл. изобр. № 35, 176 (1975).
- 2. Г. В. Бадасян, С. М. Габриелян, Г. Л. Камалов, Ю. А. Трегер, Арм. хим. ж., 33, 789 (1980).
- 3. M. E. Abracham, R. F. Benenati, Alche Journal, Ne 4, 18 (1972).
- 4. Н. П. Булацкий, И. В. Головец, Вопросы стереохныни, № 6, 101 (1977).
- 5. E. S. Could. R. R. Hiatt, K. C. Irwin, J. Am. Chem. Soc., 90, 4573 (1968).
- 6. М. Н. Фарберов, Т. А. Стожкова, А. В. Бондаренко, А. Л. Глускер, Нефтехниня, 10, 218 (1970).