XXXII, № 6, 1979

УДК 547.34+547.1+547.59

РЕАКЦИИ НЕПРЕДЕЛЬНЫХ СОЕДИНЕНИЙ

LVII. ВИНИЛАЛЛЕНОВЫЕ ФОСФОНАТЫ В КАЧЕСТВЕ ДИЕНОВОГО ФРАГМЕНТА В РЕАКЦИИ ДИЛЬСА—АЛЬДЕРА

Ю. М. ДАНГЯН, М. Г. ВОСКАНЯН, Н. Ж. ЗУРАБЯН и Ш. О. БАДАНЯП

Институт органической химин АН Армянской ССР, Ереван Поступило 16 II 1979

0,0-Дналкил-5-метил-1,3,4-генсатриенил (гептатриенил)-3-фосфонаты вступают в реакцию Дильса-Альдера. В случае несимметричных диенофилов преимущественно образуются *орто*-изомеры.

Табл. 1, библ. ссылок 4.

Ранее было показано, что винилалленовые углеводороды легко вступают в реакцию 1,4-циклоприсоединения [1]. В настоящем сообщении изучено 1,4-циклоприсоединение I—III винилалленовых фосфонатов с симметричными (малеиновый ангидрид) и несимметричными (акрилонитрил, метиловый эфир акриловой кислоты, акролеин) диенофилами.

$$(RO)_{2}P - (RO)_{2}P - (RO)$$

R C_2H_5 C_2H_5 C_4H_9 a. R' H R"=COOCO; 6. R'=CN, R"=H; R₁ CH₃ C_2H_5 C₂H₅ D. R'=CHO, R"=H; r. R'=COOCH₃; R"=H

Реакция протекает при нагревании в течение 15—20 час.: в случае малеинового ангидрида реакцию проводят в абс. бензоле при 100°, а в случае акрилонитрила, акроленна и метилового эфира акриловой кислоты—при 130° без растворителя. В результате образуются очень стабильные аддукты, которые в большинстве случаев являются вязкими.

В случае несимметричных диенофилов аддукты могут быть представлены в виде двух возможных структурных изомеров А и Б.

$$R_1$$
 CH_3 R_1 CH_3 R_1 CH_3 R_2 R_3 R_4 R_4 R_5 R_5 R_5 R_5 R_6 R_6 R_7 R_8 R_9 R

По данным тонкослойной хроматографии, преимущественно образуется один продукт. В ПМР спектрах аддуктов I б-г наблюдается расщепление трех протонов транс-метильной группы изопропилидена на дублет, что указывает на наличис лишь одного протона у третьего углеродного атома в цикле. На основании этих данных доказано, что основным продуктом циклоприсоединения является орто- изомер А (I б-г—III б-г), что хорошо согласуется с теорией [2].

Винилалленовые фосфонаты I—IV получают взаимодействием диалкилхлорфосфитов с третичными винилацетиленовыми спиртами [3, 4].

Фосфонаты III и IV описываются впервые. Состав исходных веществ и аддуктов доказан элементным анализом, структура— ПМР и ИК спектроскопией. Индивидуальность установлена хроматографическими методами.

Экспериментальная часть

ПМР спектры получены на приборе «Perkin-Elmer R-12 В» 60 $M\Gamma u$. ИК спектры сняты на спектрометре ИК-20. Анализ ТСХ проведен на пластинках «Silufol UV-254», ГЖХ—на хроматографе ЛХМ-8МД (колонка 15% полиэтиленгликоля—20000 на хроматоне-W, l=2 м, d=3 мм).

Общее описание получения винилалленовых фосфонатов (I—IV). Раствор 0,2 моля диалкилхлорфосфита в 100 мл абс. эфира охлаждают до 0°, затем в течение 30 мин. прикапывают смесь эквимольного количества триэтиламина и соответствующего карбинола в 100 мл абс. эфира. Спустя 2 часа реакционную смесь перемешивают при 20° еще 6—7 час. Осадок отфильтровывают, эфир отгоняют и остаток перегоняют в вакуме. а) 0,0-Дибутил-5-метил-1,3,4-гептатриенил-3-фосфонат (III).

Выход 58%, т. кнп. $114-116^\circ/0.1$ мм, n_D^{20} 1,4720. Найдено %: С 64,26; Н 9,43; Р 10,12. С₁₆Н₂₉О₃Р. Вычислено %: С 64,00; Н 9,66; Р 10,33.

6) 0,0-Дибутил-5-метил-1,3,4-гексатриенил-3-фосфонат (IV). Выход 55%, т. кип. 110—112°/0,1 мм, про 1,4710. Найдено %: С 62,66; Н10,09; Р 10,25. С₁₅Н₂₇О₃Р. Вычислено %: С 62,90; Н 9,44; Р 10,84. ИК спектр (III, IV), v, см⁻¹: Р=О 1250, С=С 1605, С=С 1955.

Получение аддуктов с малеиновым ангидридом (Ia—IIIa). Смесь 0,05 моля винилалленового фосфоната (I—III) и 0,05 моля малеинового ангидрида в 20 мл абс. бензола нагревают в запаянной ампуле 15 час. при 100°. После отгонки растворителя из остатка вакуумной перегонкой выделяют аддукт. В случае выпадения осадка последний перекристаллизовывают из смеси петролейный эфир-этапол. Некоторые физико-химические константы синтезированных соединений приведены в таблице. ИК спектры Ia—IIIa, v, см-1: P=O 1250—1255, CH₃ 1445—1455, C=C сопр. 1580—1590 и 1640—1645, СООСО 1770—1780 и 1840—1850.

Получение аддуктов с несимметричными диенофилами (I 6-z—III 6-z). Смесь 0,1 моля винилалленового фосфоната (I—III) и 0,1 моля диенофила нагревают в запаяной ампуле 20 час. при 130°, после чего из реакционной смеси вакуумной перегонкой выделяют аддукт. Некоторые физико-химические константы синтезированных соединений приведены в таблице. ИК спектры I6—III6, v, c, m-1: P=O 1240—1260, C=C conp. 1590—1595, C=N 2240—2250; IB—IIIB: P=O 1240—1260, C=C conp. 1585—1590, CHO 1660—1670 и 1720—1740; Ir—IIIr: P=O 1240—1260, C=C conp. 1590—1600, C=C conp. 1600 C

Ниже приводятся данные ПМР спектра 0,0-дибутил (6-изопропилиден-5-карбметокси-1-циклогексенил)-1-фосфоната (III г).

$$\begin{array}{c} \text{CH}_{3}^{II} \quad \text{CH}_{3}^{III} \\ \text{O} \quad & \\ \text{C} \\ \text{O} \quad & \\ \text{C} \\ \text{O} \quad & \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{COOCH}_{3} \\ \text{C} \\ \text{H}_{2}^{III} \\ \end{array}$$

0,9 6H, CH $_3^{\rm I}$ т. несимм.; 1,70—1,20 10H, CH $_2^{\rm I}$, CH $_2^{\rm II}$, CH $_2^{\rm IV}$ м.; 1,77, 1,84 3H, CH $_3^{\rm II}$, C, 3H, CH $_3^{\rm III}$ c; 2,5 2H, CH $_2^{\rm III}$ м; 2,7 1H, CH $_3^{\rm III}$ м, 3,55 3H, OCH $_3$ с; 3,85 4H $_4$ ОСН $_3$ д. т.; 6,50 1H, CH $_3^{\rm III}$ д. т. $J_{\rm CH}{}_3^{\rm I}$ —CH $_3^{\rm II}$ = 7, $J_{\rm CH}{}_3^{\rm I}$ —CH $_3^{\rm III}$ = 5, $J_{\rm CH}{}_3^{\rm II}$ —20 Γ μ .

В спектрах ПМР аддуктов (Іб-г—III б-г) имеются характерные сигналы для 1-циклогексенил-1-фосфонатов.

еский	Соедине-	R	R	R'	R"	Выход, %	Т. кнп., °С/мм	d ²⁰	n ²⁰	Напдено, °/0				Вычислено, %			
журнал,										С	Н	N	Р	С	Н	N	p
, XXXII,	Ia	C ₂ H ₅	СН	cood	COOCO 58 COOCO 62 COOCO 60		_		_	55,64	6,70	1	9,40	51,87	6,40		9.45
XI	Ila	C ₂ H ₅	C ₂ H ₅	cood			190/0,2		1,4884	56,31	6,95	7	9,32	56,14	6,73		9,06
	Illa	C ₄ H ₉	C ₂ H ₅	cooc			196/0,1	-	1,4943	63,42	7,65	Y.	7,53	63,01	7.78	100	7,78
4	I6	C ₂ H ₅	CH ₃	CN	Н	70	135/0,2	0,9462	1,5075	58,72	8,20	4,89	9,65	59,37	7,77	4.95	10,95
	116	C ₂ H ₅	C ₂ H ₅	CN	Н	60	158-163/0,2	0,9501	1,4942	-53,34	8,45	4,67	10,11	56,63	8,08	4,71	10,44
1	116	C ₄ H ₉	C ₂ H ₅	CN	Н	57	195-200/0,2	1,693	1,4950	61,34	9,17	4,00	8,09	64,56	9,07	3,97	8,78
		C ₂ H ₅	СНа	СНО	Н	66	150-153/0,1	0,9517	1,5048	57.82	8,91		11,25	58,74	8.01	96	11.01
	IlB	C ₂ H ₅	C ₂ H ₅	СНО	Н	66	145/0,2	0,9643	1,5045	59,87	8,63		10,23	60,00	8,33		10,33
	- 3	C ₄ H ₉	C ₂ H ₅	СНО	Н	59	155—159/0,05	0,9771	1,4950	65,15	9,47		8,43	64,45	9,27	-	8,71
	ir	C ₂ H ₅	CH,	COOCH ₃	Н	60	145-148/0,2	0,9649	1,5003	54,72	7,91	10	9,09	54,87	7.91	100	9,81
	IIr	C,H,	C ₂ H ₅	COOCH3	H	63	165-170/0,3	0,9717	1,4975	58.41	8,02		9,55	58,18	8,18		9.39
1	IIIr	C ₄ H ₉	C ₂ H ₅	соосн3	Н	77	176—180/0,2	0,9844	1,4895	61,95	8,89		7,84	62,00	9,06		8,03

^{*} Т. пл. 185—186°,

ՉՀԱԳՆՑԱԾ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ՌԵԱԿՑԻԱՆԵՐ

LVII. ՎԻՆԻԼԱԼԵՆԱՑԻՆ ՖՈՄՖՈՆԱՏՆԵՐԸ ՈՐՊԵՄ ԴԻՆՆԱՅԻՆ ՖՐԱԴՄԵՆՏ ԴԻԼՄ-ԱԼԴԵՐԻ ՌԵԱԿՑԻԱՅՈՒՄ

Տու. Մ. ԴԱՆՂՑԱՆ, Մ. Գ. ՈՍԿԱՆՑԱՆ, Ն. Ժ. ԶՈՒՐԱԲՑԱՆ և Շ. Հ. ԲԱԳԱՆՑԱՆ

0,0-Դիալկիլ-5-մենիլ-1,3,4-հեքսատրիևնիլ(հեպտատրիննիլ)-3-ֆոսֆոնատ-Ները մասնակցում են Դիլս-Ալդերի ռեակցիային։ Ոչ սիմետրիկ դիենոֆիլների դեպքում առաջանում են առավելապես orտռ-իղոմերները։

REACTIONS OF UNSATURATED COMPOUNDS

LVII. VINYL ALLENIC PHOSPHONATES AS A DIENIC FRAGMENT IN THE DIELS-ALDER REACTION

Yu. M. DANGIAN, M. G. VOSKANIAN, N. Zh. ZURABIAN and Sh. H. BADANIAN

It has been shown that 0,0-d:alkyl-5-methyl-1,3,4-hexatrienyl(hepta-trienyl)-3-phosphonates participate in the Diels-Alder reaction. In case of non-symmetrical dienophiles ortho-isomers are mainly formed.

ЛИТЕРАТУРА

- 1. А. А. Пашаян, М. Г. Восканян, Ш. О. Баданян, Арм. хим. ж., 30, 992 (1977).
- 2. А. С. Онищенко, Дпеновый синтез, Изд. АН СССР. М., 1963.
- 3. В. М. Игнатьев, Б. И. Ионин, А. А. Петров, ЖОХ, 37, 2135 (1967).
- 4. М. Г. Восканян, А. А. Геворкян, Ш. О. Баданян, Арм. хим. ж., 23, 766 (1970).