

XXXII, № 4, 1979

УДК 547.833.3

производные изохинолина

XV. СИНТЕЗ НЕКОТОРЫХ N-АРИЛАЛКИЛ (ИЛИ АЛКИЛ) -6,7-ДИМЕТОКСИ-4,4-ДИЭТИЛ-1,2,3,4-ТЕТРАГИДРОИЗОХИНОЛИНОВ

А. С. АВЕТИСЯН, О. М. АВАКЯН, А. В. ПОГОСЯН и Э. А. МАРКАРЯН

Институт топкой органической химии им. А. Л. Миджояна АН Армянской ССР, Ереван

Поступило 18 I 1979

Взаимодействием 6,7-диметоюси-4,4-диэтил-1,2,3,4-тетрагидроизохинолниа (II), полученного конденсацией 2-(3,4-диметоксифенил)-2-этилбутиламина (I) с формалнном по Пиктэ-Шпенглеру, с хлорангидридами арилалкил(или арил) карбоновых кислот получены амиды IV—VII. Последние восстановлены алюмогидридом лития до аминов VIII—XI. Двумя различными способами получен 6,7-диметокси-4,4-диэтил-2-метил-1,2,3,4тетрагидроизохиполин (III). Изучена симпатолитическая и адреноблокирующая активность полученных соединений.

Табл. 1. библ. ссылок 8.

В ранее опубликованных работах в области изохинолиновых систем было показано, что 2,4,6,7-замещенные изохинолины с диметильными, спироциклопентильным и спироциклогексильным заместителями в четвертом положении представляют определенный интерес с фармакологической точки зрения [1—3]. В связи с этим было интересно проследить за биологической активностью новых, практически не изученных производных изохинолина, имеющих два этильных заместителя в четвертом положении [4].

Синтез осуществлен по схеме (см. на стр. 305).

Исходным продуктом служил 6,7-диметокси-4,4-диэтил-1,2,3,4-тетрагидроизохинолин (II), полученный конденсацией 2-(3,4-диметоксифенил)-2-этнлбутиламина (I) [5] с формалином по Пиктэ-Шпенглеру,.

В ИК спектре II имеется интенсивная полоса поглощения вторичного амина в области 3300 см⁻¹. ПМР спектр показал наличие двух ароматических протонов в виде синглетов при 6,43 и 6,72 м. д., а также характерные химические сдвиги протонов остальных функциональных групп. В масс-спектре этого же соединения максимальным является пик молекулярного иона 249 (М+).

Далее II конденсировался с хлорангидридами замещенных ароматических кислот с получением амидов IV—VII. В ИК спектре последних имеется интенсивная полоса поглощения, характерная для С=О группы в области 1630—1635 см-1.

VII, XI, n=1, R=0-OH(C4H4)C4H5. VI. X. n=1, $R=(C_aH_a)_2CH$;

Амиды IV-VII в дальнейшем восстановлены АГЛ в эфирном растворе до соответствующих аминов VIII-XI, которые охарактеризованы в виде гидрохлоридов, т. к. маслообразные основания при перегонке разлагаются.

Синтез же N-метильного производного III осуществлен двумя путями: взаимодействием II с параформальдегидом и муравьиной кислотой [6], а также с йодистым метилом. Проведенные опыты показали, что первый способ предпочтительнее, т. к. обеспечивает более высокий выход. В ИК спектре полученного соединения отсутствовала полоса поглощения, характерная для NH группы.

Чистота и индивидуальность всех полученных соединений контролировалась ТСХ и БХ.

Действие полученных веществ на симпатические нервные воложна и адренорецепторы изучали в опытах на изолированном семявыводящем протоке крысы [7]. О симпатолитической и адреноблокирующей активности судили по уменьшению сокращений органа в процентах к контролю, вызванному трансмуральным электрическим раздражением и адреналином в концентрации $1 \cdot 10^{-6} \, \epsilon / \text{мл}$. Действие каждого препарата проверялось в опытах на четырех протоках в конечной концентрации 0,05 мкмоль/мл. В качестве контроля служили известные симпатолитики-орнид и октатенсин.

Гидрохлориды III, VIII—XI (табл.) проявляют умеренное и кратковременное блокирующее действие на симпатические нервные волокна (40-70%, 10-60 мин.). Исключение составляет гидрохлорид 6,7-диметокси-4,4-диэтил-2-(3,3-дифенилпропил) - 1,2,3,4-тетрагидроизохинолина (X), который по симпатолитической активности превосходит орнид и равен октатенсину. Однако следует отметить, что в противоположность последним X обладает не адреномиметическим, а адренолитическим действием, которое к тому же не так сильно выражено: через 10 мин. 30% ($-9,1\div81,1$), через 60 мин. 54% ($-21,3\div86,7$).

Экспериментальная часть

ИК спектры сняты не спектрометре UR-20 в вазелиновом масле, ПМР спектры—на спектрометре «Varian 60A» с внутренним эталоном ТМС в растворе CDCI₃, масс-спектр—на спектрометре MX-1303. ТСХ проведена на закрепленном слое окиси алюминия II степени активности, подвижная фаза бензол—ацетон (1:1), БХ проведена на бумаге марки «С», подвижная фаза бутанол—уксусная кислота—вода (4:1:5).

6.7-Диметокси-4,4-диэтил-1,2,3,4-тетрасидроизохинолин (II). Получили по [8] конденсацией 23,7 г (0,1 моля) амина I с 12,8 мл 20% формалина. Выход 16,1 г (64,6%), т. пл. 48—51° (из эфира). Найдено %: С 72,01; Н 9,53; N 5,83. $C_{15}H_{23}NO_2$. Вычислено %: С 72,29; Н 9,23; N 5,62. Т. пл. гидрохлорида 184—185° (из спирта). БХ, R_1 0,55. Масс-спектр: 249 (M+), 234 (M+—CH₃), 220 (M+— C_3H_5), 192 (M+—HCN—CH₂O). ПМР спектр, м. д.: 6,43 (аром. 1H) с, 6,72 (аром. 1H) с, 2,41 (NH) с,

N-Арил (или арилалкил) карбонил-6,7-диметок си-4,4-диэтил-1,2,3,4-тетрагидроизохинолины (IV—VII, табл.). Получили конденсацией эквимольных количеств амина II с хлорангидридами ароматических кислот в присутствии пиридина в бензольном растворе по [1]. Полученные амиды перекристаллизовали из смеси ацетон-эфир (1:2). TCX, R_t 0,78 \div 0,74.

Гидрохлориды N-аралкил (или арил)-6,7-диметокси-4,4-диэтил-1,2,3,4-тетрагидроизохинолинов (VIII—XI, табл.). Раствор 0,01 моля амида IV—VII в 20 мл тетрагидрофурана прибавляли к раствору 1,17 г (0,03 моля) АГЛ в 50 мл абс. офира. Реакционную смесь кипятили 12 час., затем прикапали 5 мл 10% раствора гидроокиси натрия при охлаждении ледяной водой и высушили над сернокислым натрием. Растворитель отогнали, остаток растворили в 50 мл абс. эфира и действием эфирного раствора хлористого водорода получили гидрохлорид, который перекристаллизовали из смеси спирт-эфир (5:1). БХ, R_{\star} 0,47÷0,58. ИК спектр, cm^{-1} : 1590, 1525 (C=C аром).

Гидрохлорид 6,7-диметокси-4,4-диэтил-2-метил-1,1,2,4-тетрагидроизохинолина (III, табл.). А. Смесь 1,2 г (0,04 моля) параформальдегида, 5 г (0,1 моля) муравьиной кислоты нагревали на водяной бане до 80° и при этой температуре при эффективном перемешивании добавляли 2,49 г (0,01 моля) основания II, смесь перемешивали еще 10мин., охлаждали, подщелачивали 10% раствором карбоната натрия до щелочной реакции по лакмусу, экстрагировали бензолом (2×30 мл). Бензольные вытяжки промывали водой и высушили над сернокислым натрием. Растворитель отогнали, остаток растворили в абс. эфире и получили гидрохлорид, который перекристаллизовывали из абс. спирта, т.пл. 209—210°.

Таблица

				%	435	N. */o		C1. º/。	
Соедине-	х	n	R	Выхоп,	Т. пл., °С	пайдено	вычис-	найдено	BENTIC- JOHO
IV	C=0	0	3,4,5-(CH ₂ O) ₃ C ₆ H ₂	92,4	85—86	3,24	3,16	-	1927
V	C=O	1	3,4-(CH ₃ O) ₂ C ₆ H ₃	92,2	144-145	3,448	3,27	-	_
VI	C=0	1	(C ₆ H ₅) ₂ CH	95,1	55—56	2,67	3,06	_	-
VII	C=O	1	o-OH(C.H4)C.H5	86,4	70—716	3,10	2,98	-	_
Ш	CH,	0	Н	85,6	209—210	5,01 ^B	4,66	12,03	11,82
VIII	CH ₂	0	3,4,5-(CH ₃ O) ₃ C ₆ H ₂	70,2	г	3,25	3,02	7,71	7,60
IX	CH ₂	1	3;4-(CH ₃ O) ₂ C ₆ H ₃	65,4	181—182	3,31	3,11	8,19	7,89
Х	CH ₃	1	(C ₆ H ₅) ₂ CH	95,2	86—87	3,33	2,91	7,38	7,38
XI	CH ₂	1	o-OH(C ₆ H ₄)C ₆ H ₅	75,4	124—125	2,86	2,84	7,30	7,14

а. Из петролейного эфира, 6. Найдено %: С 70,00; Н 7,43. Вычислено %: С 70,25; Н 7,72, в. Найдено %: С 63,92; Н 8,21. Вычислено %: С 54,08; Н 8,40. г. Вещество маслообразно, пикрат имеет т. пл. 161—162°.

Б. Смесь 2,49 г (0,01моля) основания II, 2,84 г (0,02 моля) йодистого метила в 100 мл абс. эфира оставили в темноте при комнатной температуре на 7 дней. Выпавшую в осадок соль растворили в 20 мл воды
и подщелачивали при охлаждении 10% раствором гидроокиси натрия.
Водный слой экстрагировали бензолом (2×30 мл) и экстракты высушили над сернокислым магнием. Растворитель отогнали, остаток растворили в абс. эфире и получили гидрохлорид. Т. пл. 209—210° (из спирта). БХ, R, 0,56.

ԻԶՈՔԻՆՈԼԻՆԻ ԱԾԱՆՑՑԱԼՆԵՐ

XV. በየበኛ N_ሀየኮԱԼԿԻԼ(ԿԱՄ ԱԼԿԻԼ)-6,7-ԴԻՄԵԹՕՔՍԻ-4,4-ԴԻԷԹԻԼ-1,2,3,4-ՏԵՏՐԱՀԻԻՐՈՒՋՈՔԻՆՈԼԻՆՆԵՐԻ ՍԻՆԹԵՋ

Ա. Ա. ԱՎԵՏԻՍՅԱՆ, Հ. Մ. ԱՎԱԳՑԱՆ, Ա. Վ. ՊՈՂՈՍՑԱՆ և Է. Ա. ՄԱՐԳԱՐՑԱՆ

Ս.րիլալկիլ(կամ ալկիլ)կարբոնաԹԹուների քլորանհիդրիդների և 6,7-դիմեթօջսի-4,4-դիէթիլ-1,2,3,4-տետրահիդրոիզոքինոլինի (II) փոխազդեցությամբ ստացվել են IV—VII ամիդները։ Վերջիններս լիթիումալյումինիում-Հիդրիդով վերականգնվել են մինչև համապատասխան VIII—XI ամինների, Ուսումնասիրված են սինթեզված միացությունների սիմպատոլիտիկ և ադրենոլիտիկ հատկությունները։

ISOQUINOLINE DERIVATIVES

XV. SYNTHESIS OF SEVERAL N-ARYLALKYL(OR ALKYL)-6,7-DIMETOXY-4,4-DIETHYL-1,2,3,4-TETRAHYDROISOQUINOLINES

A. S. AVETISSIAN, H. M. AVAKIAN, A. V. POGHOSSIAN and E. A. MARKARIAN

The amides IV—VII have been prepared by the interaction of arylalkyl(or alkyl)carboxylic acid chlorides with 6,7-dimethoxy-4,4-diethyl-1,2,3,4-tetrahydroisoquinoline (II). The latter compound was obtained condensing 2-(3,4-dimethoxyphenyl)-2-ethylbutylamine (I) with formaline by the Pictet-Spengler method.

The synthesized amides have been reduced with lithium aluminum

hydride to the amines VIII—XI.

6,7-Dimethoxy-4,4 - diethyl - 2 - methyl-1,2,3,4-tetrahydroisoquinoline III) was obtained by two different methods.

The sympatholytic and adrenolytic properties of the synthesized compounds have been studied.

ЛИТЕРАТУРА

- 1. Э. А. Маркарян, Ж. С. Арустамян, С. С. Василян, ХГС, 1972, 679.
- 2. Э. А. Маркарян, Ж. С. Арустамян, Арм. хим. ж., 27, 779 (1974).
- 3. J. Finkelstein, E. Chiang, A. Brossi, J. Med. Chem., 14, 584 (1971).
- 4. Пат. США № 3420818 (1967).
- 5. Пат. Франции, № 1343163 (1963); [С. А. 60, 14480 (1964)].
- 6. I. Knabe, I. Kubutz, Arh. Pharm., 298, 401 (1965).
- 7. О. М. Авакян, Биол. ж., Армении, 21, 6,8 (1968).
- 8 . L. Helfer, Helv. chim. Acta, 27, 945 (1924).