20.340406 РРГРЦЧЦЕ ЦГОЦЧРР АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXXII, № 11, 1979

УДК 542.947+547.651

ИССЛЕДОВАНИЯ В ОБЛАСТИ АМИНОВ И АММОНИЕВЫХ СОЕДИНЕНИЙ

СL. КАТАЛИЗИРУЕМАЯ ОСНОВАНИЕМ ВНУТРИМОЛЕКУЛЯРНАЯ ЦИКЛИЗАЦИЯ С ОБРАЗОВАНИЕМ СОЛЕИ *п*-ФЕНИЛЕН-4,4'-бис-(2.2-ДИАЛКИЛБЕНЗ[1]-ИЗОИНДОЛИНИЯ)

А. Т. БАБАЯН, Э. О. ЧУХАДЖЯН, Эл. О. ЧУХАДЖЯН, Г. Л. ГАБРИЕЛЯН, В. Г. АНДРИАНОВ, А. А. КАРАПЕТЯН и Ю. Т. СТРУЧКОВ

Институт элементоорганических соединений АН СССР. Москва Институт органической химии АН Армянской ССР, Ереван

Поступило 12 VII 1979

Установлено, что дибромиды *n-бис* [3-(диалкил-3-фенкл-2-пропиниламмонно)-1-пропинил] бензола (1—IV) в водно-спиртовой среде в присутствии каталитических количеств едкого кали с саморазогреванием подвергаются внутримолекулярной 2-кратной циклизации с образованием солен Ia—IVa. На примере соли Ia методом рентгеноструктурного анализа определена структура продуктов циклизации и доказано, что Ia является бромистой солью *n*-фенилен-4,4'-бис (2,2-диметилбенз [1]) изоиндолиния). Структура расшифрована методом гяжелового атома и уточнена методом наименьших квадратов в полноматричном изотропном (в анизотропном для атома Br) приближении. Окончательные значения: R=0.098, $R_w=0.093$. Кристаллы Ia моноклинные, a=19,02 (1), b=7,183 (5), c=23,38 (1) A*, $\beta=97,46$ (1)°, V=3166,5 (3) A³, $d_{выч}=1,32$ *г*.*и*³, *Z*=4, пространственная группа $P2_1/c$. В кристалле образуются нормальные водородные связи: между молекулами воды O—H...O и молекулами воды и анионами O—H...Br.

Рис. 1, табл. 4, библ. ссылок 6.

Было установлено, что дибромиды *n-бис*[3-(диалкил-2-пропиниламмонио)-1-пропинил]бензола (А) в присутствии каталитического количества основания в водном растворе с саморазогреванием подвергаются внутримолекулярной (типа диенового синтеза) 2-кратной циклизации с образованием производного фенантрена (Б), а не антрацена [1]. Строение Б было подтверждено данными УФС.

• А-Ангстрем

881

Интересно было изучить в аналогичных условиях поведение солей, содержащих вместо боковых пропаргильных групп 3-фенилпропаргильные, для которых образование фенантренового производного должно быть затруднено стерическими факторами.

С этой целью взаимодействием 1,4-бис (3-дналкиламино-1-пропинил)бензолов с бромистым 3-фенилпропаргилом в бензоле были получены соли I—IV.

Исходные амины были получены по [2]. Соли I—IV плохо растворимы в воде, поэтому циклизация осуществлялась в водно-спиртовом растворе. Все четыре соли в присутствии 0,5 г-экв щелочи с саморазогреванием подвергаются 2-кратной циклизации с образованием солей Ia— IVa с 65, 72, 74 и 71% выходом, соответственно (табл. 4). Наряду с основным продуктом были выделены (13—18%) смеси солей с элементным составом исходной соли. Согласно TCX, в омеси имеется небольшое количество исходной соли и соль, которую нам пока не удалось выделить в чистом виде и идентифицировать.

Для циклизации изучаемых солей имеется не одна возможность. Уже для первой циклизации имеются два пути. В одном в качестве потенциального диенового фрагмента выступает боковая 3-фенилпропаргильная группа (а), в другом—общая (б).

В первом случае в повторной циклизации может в качестве диенового фрагмента выступать или боковая 3-фенилпропаргильная группа с образованием соединения 3, или общая группа с образованием 4.

Во втором случае для повторной циклизации с участием общей группы в роли диенового фрагмента имеются две возможности: циклизация в βположение нафталинового кольца, что очень маловероятно, и циклизация в α-положение нафталинового кольца с образованием производного фенантрена, что в данном случае исключается пространственными факторами. При участии в повторной циклизации боковой 3-фенилпропаргильной группы в роли диенового фрагмента должно образоваться соединение 4.

Таким образом, более реальными казались структуры 3 и 4. Учитывая любовь природы к симметрии, мы отдавали предпочтение структуре 3, что и было подтверждено на примере Іа рентгеноструктурным анализом, результаты которого приведены ниже. Кристаллы Іа выращены из водного спирта. и, согласью данным настоящего исследования, представляют тригидрат состава C₃₄H₃₄N₂Br₂·3H₂O (Ia).

Экспериментальная часть и расшифровка структуры

Рентгеновский эксперимент проводился на 4-кружном автоматическом дифрактометре "Синтекс Р2¹" (M_0K_{α} , $\lambda = 0,7107$ А, графитовый монохроматор) при температуре $\ell = -120^\circ$.

Параметры элементарной ячейки:

a = 19,02	(1) A	V = 3166,5 (3)	A³
b = 7,180	(5) A	выч. = 1,32 г/см ³	
c = 23,38	(i) A	Z = 4	
$\beta = 97,46$	(2)°	пр. гр. P2,/с	+

1787 отражений, из 1945 измеренных независимых с $F^* > 2^3$ использованы в расшифровке структуры методом тяжелого атома. Структура уточнена методом наименьших квадратов в полноматричном изотропном (в анизотропном для атома Br) приближении по программам «Синтекс—EXTL», R=0,098, $R_w = 0,093$. Координаты атомов со стандартными отклонениями приведены в табл. 1. Геометрия катиона и длины связей со стандартными отклонениями показаны на рисунке. В табл. 2 привсдены валентные углы. Характеристики плоских фрагментов молекулы даны в табл. 3.

Обсуждение результатов

Молекула в целом имеет цисондную конфигурацию и обладает сильно искаженной симметрией C₂v. Все три ароматические системы плоские. 5-членные гетероциклы не плоские, а имеют конформацию конверта (выход атомов N1 и N2 из плоскостей четырех остальных атомов цикла —0,510 и —0,548 А, соответственно, двугранные углы между плоскостями N1, C1, C12 и C1, C2, C11, C12 33,3°, N2, C15, C26 и C15, C16, C25, C26 33,4°). Атомы азота имеют тетраэдрическую конфигурацию (средний угол C-N-C 108, 5°). Среднее растояние C-N 1,54А удлинено по сравнению со стандартным значением ординарной связи C-N [3] и типично для связей C (sp³) — N (sp³) четвертичного аммонийного атома азота [4]. Остальные геометрические параметры в пределах 3 с обычные [3], однако их значительный разброс указывает на невысокую точность, обусловленную низким качеством кристалла.

Таблица 1

Атом	x	у	z	B1130, A2
N1 N2 C1 C2 C3 C4 C5 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C22 C23 C24 C25 C26 C27 C28 C33 C4 C1 C1 C12 C13 C14 C12 C13 C14 C12 C13 C14 C15 C10 C11 C12 C13 C14 C15 C10 C11 C12 C13 C14 C15 C10 C11 C12 C13 C14 C15 C10 C11 C12 C13 C14 C15 C10 C11 C12 C13 C14 C15 C10 C11 C12 C13 C14 C15 C10 C11 C12 C13 C14 C11 C12 C13 C14 C15 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C20 C21 C12 C13 C14 C15 C12 C12 C13 C14 C15 C16 C17 C18 C20 C21 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C22 C23 C24 C25 C26 C27 C28 C27 C28 C27 C28 C29 C21 C22 C23 C24 C24 C25 C26 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C28 C27 C28 C28 C27 C28 C28 C28 C28 C28 C28 C28 C28 C28 C28	$\begin{array}{c} 189 (1) \\ 104 (1) \\ 242 (2) \\ 314 (2) \\ 379 (2) \\ 442 (2) \\ 507 (2) \\ 562 (2) \\ 559 (2) \\ 491 (2) \\ 432 (2) \\ 302 (2) \\ 225 (2) \\ 177 (2) \\ 118 (2) \\ 225 (2) \\ 177 (2) \\ 118 (2) \\ 122 (2) \\ 122 (2) \\ 198 (2) \\ 2248 (2) \\ 321 (2) \\ 321 (2) \\ 374 (2) \\ 444 (2) \\ 444 (2) \\ 470 (2) \\ 422 (2) \\ 349 (2) \\ 227 (2) \\ 166 (2) \\ 118 (2) \\ 311 (2) \\ 348 (2) \\ 348 (2) \\ 360 (2) \\ 343 (2) \\ 320 (2) \\ 311 (2) \\ 327 (2) \\ 103 (1) \\ -1 (1) \\ 61 (1) \\ \end{array}$	$\begin{array}{c} - 333 (4) \\ - 1018 (4) \\ - 276 (5) \\ - 294 (4) \\ - 238 (5) \\ - 286 (5) \\ - 286 (5) \\ - 409 (4) \\ - 472 (5) \\ - 409 (4) \\ - 472 (5) \\ - 403 (4) \\ - 488 (4) \\ - 167 (5) \\ - 403 (5) \\ - 1214 (5) \\ - 1216 (4) \\ - 1339 (4) \\ - 1335 (4) \\ - 1335 (4) \\ - 1335 (4) \\ - 1192 (4) \\ - 1192 (4) \\ - 1199 (4) \\ - 1199 (4) \\ - 1096 (4) \\ - 1096 (4) \\ - 987 (5) \\ - 826 (5) \\ - 987 (5) \\ - 826 (5) \\ - 997 (5) \\ - 808 (5) \\ - 997 (5) \\ - 808 (5) \\ - 997 (5) \\ - 808 (5) \\ - 997 (5) \\ - 309 (5) \\ - 741 (5) \\ - 599 (5) \\ - 1009 (4) \\ - 1337 (3) \\ - 676 (3) \\ - 999 (5) \\ - 990 (5) \\ - 990 (5) \\ - 990 (5) \\ - 990 (5) \\ - 1009 (4) \\ - 1337 (3) \\ - 676 (3) \\ - 990 (5) \\ - 90 (5) $	$\begin{array}{c} 497 (1) \\ 745 (1) \\ 458 (1) \\ 458 (1) \\ 493 (1) \\ 486 (1) \\ 523 (1) \\ 515 (1) \\ 553 (2) \\ 601 (1) \\ 515 (1) \\ 553 (2) \\ 601 (1) \\ 570 (1) \\ 570 (1) \\ 570 (1) \\ 574 (1) \\ 536 (2) \\ 467 (2) \\ 773 (1) \\ 776 (1) \\ 807 (1) \\ 807 (1) \\ 807 (1) \\ 807 (1) \\ 802 (1) \\ 775 (1) \\ 775 (1) \\ 775 (1) \\ 775 (1) \\ 775 (1) \\ 775 (1) \\ 779 (2) \\ 713 (1) \\ 619 (2) \\ 602 (1) \\ 638 (1) \\ 690 (2) \\ 709 (1) \\ 673 (2) \\ 376 (1) \\ 67 (1) \\ 45 (1) \end{array}$	$\begin{array}{c} 1.8 & (7) \\ 2.0 & (7) \\ 0.6 & (7) \\ 0.7 & (8) \\ 0.9 & (7) \\ 1.1 & (8) \\ 0.8 & (7) \\ 3.2 & (9) \\ 1.4 & (8) \\ 1.0 & (8) \\ 1.5 & (8) \\ 1.9 & (8) \\ 1.9 & (8) \\ 1.9 & (8) \\ 1.9 & (8) \\ 1.9 & (8) \\ 0.4 & (7) \\ 2.6 & (9) \\ 2.1 & (9) \\ 2.1 & (9) \\ 2.1 & (9) \\ 2.2 & (9) \\ 2.1 & (7) \\ 2.2 & (9) \\ 2.1 & (7) \\ 2.2 & (9) \\ 0.6 & (7) \\ 2.2 & (9) \\ 0.6 & (7) \\ 0.6 & (7) \\ 0.6 & (7) \\ 0.6 & (7) \\ 0.6 & (7) \\ 0.6 & (7) \\ 0.8 & (9) \\ 1.2 & (8) \\ 1.9 & (9) \\ 1.15 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.5 & (9) \\ 1.2 & (9) \\ 1.5 & (9) \\ 1.2 & (9) \\ 1.5 & (7) \\ 1.5 & (9) \\ 1.2 & (9) \\ 1.5 & (7) \\ 1.5 & (9) \\ 1.2 & (9) \\ 1.5 & (7) \\ 1.5 & (9) \\ 1.5 & (7) \\ 1.5 & (9) \\ 1.5 & (7) \\ 1.5 & (9) \\ 1.5 & (7) \\ 1.5 & (9) \\ 1.5 & (7) \\ 2.7 & (9) \\ 1.2 & (8) \\ 1.2 & (9) \\ 1.5 & (7) $
Br1 Br2	092 (2) 2406 (2)		1466 (2) 4140 (2)	

Координаты втомов (×10³ для втомов Вг × 10⁴) и их температурные факторы*

* Анизотропные температурные факторы, $T = \exp\left[-1/4\left(B_{11}h^2a^{*2}+\cdots 2\beta_{23}klo^*c^*\right)\right]$.атомов брома:

	<i>B</i> ₁₁	B22	B33	B13	B ₁₃	B23
Br1	5,7 (3)	1,1 (2)	2,3 (2)	0,1 (2)	1,0 (2)	0,2 (2)
Br2	5,1 (2)	0,9 (2)	2,2 (2)	0,8 (2)	-0,2 (2)	- 0,6 (2)
	Monoward					

Молекулы воды.

Таблица 2

Угол	ω	Угол	(1)
C12N1CJ N1ClC2 C1C2C11 C2C11C12 C11C12N1	105 (2) 106 (2) 104 (2) 113 (2) 101 (2)	C25C16C17 C16C17C18 C17C18C23 C18C23C24 C23C24C25 C24C25C26	114 (3) 122 (3) 121 (3) 114 (3) 121 (3) 128 (3)
C11C2C3 C2C4C4 C3C4C9 C4C9C10 C9C10C11 C10C11C2	122 (3) 124 (3) 116 (3) 117 (3) 126 (3) 114 (3)	C23C18C19 C18C19C20 C19C20C21 C20C21C22 C21C22C23 C22C23C18	115 (3) 120 (3) 125 (3) 117 (3) 121 (3) 122 (3)
C9C5C5 C4C4C6 C5C6C7 C6C7C8 C7C8C9 C8C9C4	121 (3) 116 (3) 127 (3) 117 (3) 119 (3) 120 (3)	C15C16C17 C17C18C19 C22C23C24 C23C24C32 C25C24C32 C26C24C32	129 (3) 124 (3) 124 (3) 119 (3) 120 (3) 124 (3)
C1C2C3 C3C4C5 C8C9C10 C9C10C29 C11C10C29 C10C11C12	- 134 (3) 123 (3) 124 (3) 119 (3) 113 (3) 133 (3)	C15N2C27 C15N2C28 C26N2C27 C26N2C27 C26N2C28 C27N2C28	107 (2) 113 (2) 106 (2) 113 (2) 113 (2) 114 (2)
CINICI3 CINICI4 CI2NICI4 CI2NICI3 CI3NICI4	108 (3) 106 (2) 109 (2) 108 (2) 111 (2)	C29C30C31 C30C31C32 C31C32C33 C32C33C34 C33C34C39 C34C29C30	120 (3) 113 (3) 129 (3) 116 (3) 113 (3) 123 (3)
C26N2C15 N2C15C16 C15C16C25	103 (2) 102 (2) 116 (3)	C10C29C30 C10C29C34	116 (3) 120 (3)
C16C25C26 C25C26N2	108 (3) 100 (2)	C24C32C31 C24C32C33	116 (3) 115 (3)
144(5) 0 14 14 14 14 14 14 14 14 14 14 14 14 14		-	100 (4) (4) (4)
149(5) (San 15	IIIS) BEITS BIL	20 (5) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(39(4) (1)111 (39(4) (1)111

Рис.

() Ling

12/25

In Balling

Плоские фрагменты молекулы					
Паоскость 1	Δ	Δ/3	Плоскость 3	. 1	Δ/σ
	а) Отклон	ение ато	мов из плоскос	тей	
C1 C2 C3 C4 C5 C7 C7 C8 C9	0,05 0,07 0,01 0,02 0,01 0,02 0,04 0,02	1.5 2,3 0,4 0,5 0,4 0,5 1,1 0,6 0,5	C29 C30 C31 C32 C33 C34 C10* C24*	$\begin{array}{c} 0,03\\ -0,03\\ 0,01\\ 0,002\\ -0,000\\ -0,02\\ 0,13\\ 0,14\end{array}$	0,8 0,8 0,3 0,1 0,0 0,4 4,1 4,7
C11 C12	-0,04 0,03	1,2 1,0	Плоскость 4		
N1* -0,42 16,0 Плоскость 2			C1 C2 C11 C12	0,01 0,01 0,01 0,01	0,3 0,5 0,5 0,2
C15 C16	0,05 0,06	1,5 2,0	Плоскость 5		
C17 C18 C19 C20	0,03 0,001 0,001 0,05	0,9 0,1 0,1 1,8	C1 • N1 C12	0 0 0	0 0 0
C21 C22 C23	0,02 0,02 0.03	0,6	Плоскость 6	1	
C24 C25 C26 N2*	-0,02 -0,04 0,08 -0,41	0,6 1,4 2,6 15,0	C15 C16 C25 C26	0,01 0,01 0,03 0,03	0,1 0,1 0,1 0,1
12.05	F 340	1.	Плоскость 7		
			C15 N2 C26	0 0 0	0 0 0

6) Уравнение плоскостей Ax + By + Cz - D = 0 в ортогона ьной системе координат

Плоскость	A	В	С	D
1 2 3 4 5 6 7	0,2154 0,0479 0,8981 0,2751 0,2841 0,0242 0,4797	-0,7752 -0,6763 -0,0143 -0,7718 -0,6870 -0,7112 0,4421	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{vmatrix} - & 4, 1190 \\ - & 7, 3338 \\ - & 10, 5013 \\ - & 3, 6774 \\ - & 6, 6526 \\ - & 6, 4014 \\ - & 9, 7242 \end{vmatrix} $

с) Некоторые двугранные углы (град)

Плоскости		Плоскости	
$\begin{array}{c c} 1-2 \\ 1-3 \\ 2-3 \end{array}$	18,1° 85,5 67,9	4-5 6-7	33,3° 33,4

• Эти атомы не включены в расчет среднеквадратичных плоскостей.

Таблица 4

Результаты Катализируемой основанием циклизации солей 1-1V в соли la-IVa Вычислено. Найдено, % Продукт циклизации Найдено, % % C.H. C.H. 'CH''C≡C $\dot{C} \equiv CCH_2$ R2N R₂N NR. ИК спектр, с.и-1 R. ИК спектр, c.w⁻¹ (УФ спектр, н.ч) (УФ спектр, н.и) $CH_{C} \equiv CC_{A}H_{A}C \equiv CCH_{A}$ Br Br N N Br N 0/0 Br (т. пл., °С) Выход. Br (т. пл., °С)* $I R_{1} = (CM_{3})_{2} (89 - 91)$ 25,13 4,84 25,39 4.44 700, 770, 650, $R_{2} = (CH_{3})_{2}$ 65 4,42 730, 780, 830, 880 la 25,55 1440, 1470, 1480, (237, 290) 2230, 3015, 3050 (217, 225, 270) 22,70 4,59 23,46 4,11 1590, 2235 Ila (CH₂), 72 23,90 3,78 720, 770, 870, (CH₂)₄ (178–179) 11 (270, 283) 1500, 3070 (230, 270, 292, 366, 390) 4,22 22,53 3,94 1550, 1590, 1610, (CH₂)₅ (183-185) 22,50 22,45 3,95 Ш llia (CH2)5 74 710, 770, 820, 2230 870, 1505, 3040 (247, 256, 270, (228, 278, 310, 318, 325) 292, 294) 23,04 3,92 22,41 3,75 1550, 1570, 2235 4,01 720, 780, 870, 1575 IV (153 - 155)IVa 71 22,40 (238, 292, 360, (247, 256, 270, 292) 378)

* Выше 250° наблюдается потемнение, нагревание до 350°С приводит к обугливанию.

В кристалле образуются водородные связи О-Н...О между молекулами воды длиной 2,79(3), 2,78(3), 2,72(3) А и О-Н... Вг между молекулами воды и анионами длиной 3,15(2), 3,30(2), 3,26(2) А. Длины водородных связей обычные [5].

Общая методика циклизации солей I-IV в соли la-IVa

К раствору, состоящему из 0,002 моля испытуемой соли, 2—3 мл этанола и 1,5—2 мл воды, добавляют 0,5 мл 2 н раствора едкого кали. Реакция происходит с саморазопреванием. На следующий день отделяют выпавшие кристаллы (основная часть солей Ia—IVa). Фильтрат нейтрализуют бромистоводородной кислотой, выпаривают досуха и абс. спиртом экстрагируют остальную часть органических солей. При стоянии опиртового экстракта выпадает еще некоторое количество солей Ia— IVa, их отделяют. Из фильтрата эфиром осаждают остальную часть солей. Последняя представляет смесь двух солей исходной и соли, пока нами не выделенной в чистом виде. Соли Ia—IVa перекристаллизовываются из воды или водно-спиртового раствора. Индивидуальность Ia— IVa установлена методом тонкослойной хроматографии. Растворители: бутанол, этанол, уксусная кислота, вода (10:5:1:3), носитель—силуфол UV-254. R, Ia 0,57, R, IIa—IVa=0,6.

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԱՄԻՆՆԵՐԻ ԵՎ ԱՄԻՆԱ_ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

CL. Պ-ՖԵՆԻԼԵՆ-4,4'-phu(2,2-ԴԻԱԼԿԻԼԲԵՆԶ[i]ԻԶՈՒՆԴՈԼԻՆԻՈՒՄԱՑԻՆ) ԱՂԵՐԻ ՍՏԱՑՈՒՄԸ ՀԻՄՔՈՎ ԿԱՏԱԼԻԶՎՈՂ ՆԵՐՄՈԼԵԿՈՒԼԱՅԻՆ ՑԻԿԼՄԱՄԲ

Ա. Թ. ԲԱԲԱՑԱՆ, Է. Հ. ՉՈՒԽԱՋՑԱՆ, Էլ. Հ. ՉՈՒԽԱՋՑԱՆ, Դ. Լ. ԳԱԲՐԻԵԼՑԱՆ, Վ. Գ. ԱՆԴՐԻԱՆՈՎ, Ա. Ա. ԿԱՐԱՊԵՏՑԱՆ և Ցու. Տ. ՍՏՐՈԻՉԿՈՎ

Հաստատվել է, որ պ-թիս-[3-(դիալկիլ-3-ֆենիլ-2-պրոպինիլամոնիո)-1պրոպինիլ] բենղոլի դիբրոմիդները ջրա-սպիրտային միջավայրում կատալիտիկ ջանակությամբ կծու կալիումի ներկայությամբ ինջնատաբացմամբ ենթարկվում են ներմոլեկուլային կրկնակի ցիկլման, առաջացնելով պ-ֆենիլեն-4,4'-թիս-(2,2-դիալկիլբենը[[]իզոինդոլինիումային) աղեր, որոնց կառուցվածջը հաստատվել է ռենտգենակառուցվածքային անայիզի եղանակով։

INVESTIGATIONS IN THE FIELD OF AMINES AND AMMONIUM COMPOUNDS

CL. PREPARATION OF *p*-PHENYLEN-4,4'-bis(2,2-DIALKYLBENZO(I)-ISOINDOLINIUM) SALTS BY MEANS OF INTERMOLECULAR CYCLIZATION REACTION CATALIZED WITH BASES

A. T. BABBYAN, E. H. CHUKHAJIAN, EI. H. CHUKHAJIAN, G. L. GABRIELIAN, V. G. ANDRIANOV, A. A. KARAPETIAN and Yu. T. STRUCHKOV

It has been shown that *p-bis*[(3-dialkyl-3-phenyl-2-propynylammonio)-1-propynyl]benzene dibromides undergo an exothermic intermole-

888

cular double cyclization in an aqueous alcoholic medium and in the presence of catalytic amounts of potassium hydroxide forming p-phenylen-4,4'-bis-(2,2-dialkylbenzo(f)isoindolinium)salts whose structure has been confirmed by means of X-ray structural analysis.

ЛИТЕРАТУРА

1. Э. О. Чухаджян, Г. Л. Габриелян, А. Т. Бабаян, ЖОрХ, 14 2502 (1978). 2. И. Л. Котляревский, Э. К. Андриевская, Изв. АН СССР, сер. хим., 546 (1966).

3. Ed. L. E. Sutton, Tables of interatomic distances and configuration in molecules and ions, London, 1965.

4. G. L. Birnbaum, Acta Crystallogr., 23, 526, 1967.

.5. W. C. Hamilton, I. A. Ibers, Hydrogen bonding in solids, New York, 1968.