XXXI, № 9, 1978

УДК 541.124

ИЗУЧЕНИЕ РЕАКЦИИ ПЕРЕКИСЬ БЕНЗОИЛА-ДИМЕТИЛ-АНИЛИН В БИНАРНЫХ РАСТВОРИТЕЛЯХ БЕНЗОЛ-ПИРИДИН И БЕНЗОЛ-ГЕКСАН МЕТОДОМ ЭПР

Э. Р. САРУХАНЯН и Н. М. БЕЙЛЕРЯН

Ереванский государственный университет

Поступило 25 VII 1977

Показано, что скорость инициирования цепей при взаимодействии перекиси бензоила (ПБ) с диметиланилином (ДМА) возрастает с ростом мольной концентрации пиридина в смеси.

Скорость иниципрования описывается уравнением аддитивности

$$K_{\text{ин}} = K_{\text{бенз}} [\text{бенз}] + K_{\text{пир}} [\text{пир}]$$

С увеличением концентрации бензола в смеси бензол-гексан скорость иницинрования увеличивается, а константа скорости описывается уравнением

$$K_{\text{RH}} = K_{\text{rek}} [\text{rek}] + K_{\text{deh3}} [\text{deh3}]^2.$$

Рис. 4, табл. 2, библ. ссылок 12.

Предметом нашего исследования является реакция ДМА-ПБ, носящая радикально-цепной характер. Относительно этой реакции в литературе имеется немало сведений [1,2].

В бензольной среде реакция протекает быстро. При этом первой стадией является образование эквимольного комплекса между перекисью и амином, способного к распаду как по радикальному, так и по нерадикальному механизму [3—7],

В присутствии кислорода скорость этой реакции в бензоле, стироле, ацетоне—величина одного порядка, в пиридине же протекает в 50 раз быстрее. Скорость в смеси хлороформ-бензойная кислота очень мала. Относительно такого поведения растворителей нет никаких объяснений.

Методом ЭПР показано [7], что первичной стадией является переход электрона от восстановителя к окислителю с образованием ионной пары [Am+ H, RO-, RO-] в «клетке» растворителя. Дальнейшее течение реакции обусловлено выходом радикалов из клетки.

Естественно полагать, что растворитель может оказать влияние на все элементарные акты этой реакции. В данном сообщении приведены данные, относящиеся к влиянию пиридина, бензола и гексана только на скорость инициирования.

Экспериментальная часть

Исследования проведены в интервале 15—25°. Концентрации ПБ и ДМА сохранялись постоянными и равными соответственно $2 \cdot 10^{-2}$ и $2 \cdot 10^{-1}$ м/л. Концентрация пиридина варьировалась в интервале 0—6, а гексана—0—3,8 м/л.

Предварительно в реакционную смесь вносился стабильный иминоксильный радикал и по скорости его расхода определялась скорость инициирования. В течение опыта искажения или наложения не наблюдалось. В смеси бензол-пиридин концентрация радикала была равной $6.2 \cdot 10^{-4}$, а в смеси бензол-гексан — $1.25 \cdot 10^{-4}$ м/л.

В смеси бензол-пиридин стабильный радикал расходуется с начала реакции, в смеси бензол-гексан — спустя \approx 40 мин. (τ_0) (этот промежуток времени зависит от концентрации гексана).

Таблица / Кинетические параметры реакции ДМА-ПБ в смесях бензол-пиридин

Спир, моль/л	<i>T</i> , °K							30-19	(A)	4-1
	288		293		298		303	3 3	9	91
	$W_I \cdot 10^s$, $MOAb/A \cdot MUH$	К ₁ ·103, л/моль-мин	W _i ·10°, моль/л·жин	К ₁ · 103, л/моль · мин	$W_i \cdot 10^{\epsilon}$, wore/ $\alpha \cdot \mu u H$	К, 103, л/моль-мин	Е, ккая/жоль	-4So, 3x.ed	"∆G₀, ккал/моль	∆Н₀, ккал/моль
1,2	16	4,0	27	6,8	42	10,5	17,0	21	22,5	16,5
2,4	27	6,8	37	9,3	57	14,3	14,0	31	22,3	13,4
3,6	43	10,0	54	13,5	74	16,0	9,2	47	22,1	8,6
4,8	57	14,3	68	17,0	92	24,0	8,5	48	21,8	8,0
6,0	67	16,0	78	18,8	104	25,0	8,5	48	21,8	8,0

Таблица 2
Кинетические параметры реакции ДМА-ПБ в смесях гексан-бензол

Стекс, моль/л	<i>T</i> , °K							700	(39.3)2	100000
	288		294		298		F	with it	9	92
	W1.10°, MOAD A. MUH	К, · 103, л/моль · мин	W _i .10°, моль/л.мин	К ₁ ·103, л/моль·мин	W ₁ .1Ge, μολε/λ·μυκ	К ₁ · 103, л/моль-мин	Е, ккал/моль	— 25°, эк.ед	ΔG° κκα / πόπο	∆Н°, ккал/жоль
0,80	11,3	2,82	16,6	4,15	31,6	7,90	13,3	34,8	22,8	12,7
1,32	8,2	2,05	14,0	3,50	25,0	6,25	13,3	35,4	22,9	12,7
2,28	7,2	1,80	11,9	3,00	20,8	5,20	13,3	35,7	23,0	12,7
3,04	6,2	1,55	10,7	2,20	25,0	4,15	13,3	36,0	23,1	12,7
3,80	5,4	1,35	9,4	2,35	31,6	3,70	13,2	36,3	23,2	12,7

Как видно из табл. 1, 2, с увеличением температуры и концентрации пиридина скорость реакции возрастает, а с ростом концентрации гексана—уменьшается.

Скорость инициирования в смеси бензол-пиридин рассчитывалась

по уравнению

$$W_{\text{HII}} = f \frac{[R^{\cdot}]_{0}}{\tau} \tag{1}$$

а в смеси бензол-гексан —

$$W_{\rm nn} = f \frac{[R^*]}{\tau - \tau_0} \tag{2}$$

т, (т — т₀) — время, в течение которого радикал расходуется, [R·]₀ — исходная концентрация стабильного радикала.

Константа скорости рассчитана по уравнению, известному из ли-

тературы:

$$W_{\text{KH}} = K_{\text{HE}} \left[\text{ДМА} \right] \left[\text{ПБ} \right] \tag{3}$$

в интервале 0-30° [8].

В обеих смесях выполняется уравнение Аррениуса. С увеличением концентрации пиридина энергия активации реакции растет, а энтропия активации уменьшается. При увеличении концентрации гексана энергия активации не меняется (13 ккал/моль), процесс при этом изоэнтальпийный.

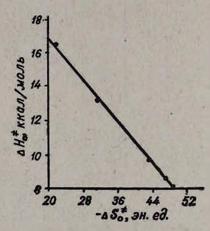


Рис. 1. Зависимость энтальпии активации реакции ДМА-ПБ от энтропии активации в смесях бензолпиридин.



Рис. 2. Зависимость $K_{9\varphi}/C_{пир}$ — $C_{6ens}/C_{пир}$ для реакции ДМА-ПБ при разных температурах (°K): 1-288, 2-293, 3-298.

В смеси пиридин-бензол соблюдается закон линейности свободных энергий, т. е. зависимость ΔH_0^+ от ΔS_0^+ прямолинейна (рис. 1). Из наклона этой прямой рассчитана изокинетическая температура [9], которая примерно равна или больше температуры опыта.

Применимо также уравнение аддитивности

$$K_{\text{ин}} = K_{\text{бенз}} [\text{бенз}] + K_{\text{пир}} [\text{пир}]$$
 (4)

в смеси бензол-пиридин и

$$K_{\text{ин}} = K_{\text{гек}} [\text{гек}] + K_{6_{2} \text{нз}} [\text{близ}]^{2}$$
 (5)

в смеси бензол-гексан (рис. 2 и 3).

Константа скорости инициирования в чистом бензоле, рассчитанная на основании обоих уравнений, совпадает в пределах ошибки опыта. Она соответствует константе K_0 , определенной Месробяном и Грахамом [10].

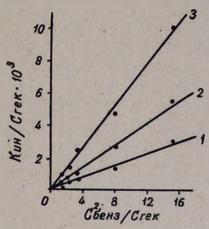


Рис. 3. Зависимость $K_{9\varphi}/C_{\text{гек}}$ — $C_{6\text{енз}}^2/C_{\text{гек}}$ для реакции ДМА-ПБ при разных температурах (°K): $1-288,\ 2-294,\ 3-298.$

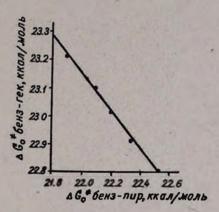


Рис. 4. Зависимость свободной энергии активации реакции ДМА-ПБ в смесях пиридин-бензол от свободной энергии активации той же реакции в смесях гексан-бензол.

Отсюда можно заключить, что несмотря на индукционный период, наблюдаемый в смеси бензол-гексан, в обеих смесях методом ЭПР фиксируется одна и та же элементарная реакция. В смеси бензол-гексан процесс этот, по-видимому, протекает очень медленно, поэтому расход R начинается с опозданием. В соответствии с этим находятся данные рис. 3, на котором свободная энергия активации, полученная для смеси бензол-пиридин $\Delta G_{\text{on-6}}^+$, отложена против той же величины в смеси бензол-гексан $\Delta G_{\text{or-6}}^+$ (при одинаковом содержании бензола в обеих смесях). Из рис. 3 следует, что $\Delta G_{\text{on-6}}^+$ обратно пропорциональна $\Delta G_{\text{or-6}}^+$, т. е. величины эти относятся к одному и тому же элементарному акту, только влияние пиридина и гексана на этот акт различно (рис. 4).

Известно, что в ряду пиридин-бензол-гексан уменьшается способность к образованию донорно-акцепторной связи или основность. Отсюда можно заключить, что основность растворителя способствует как образованию активного комплекса, так и распаду его на радикалы с выходом радикалов из клетки.

ԷՊՌ ԵՂԱՆԱԿՈՎ ԲԵՆԶՈՒԼՊԵՐՕՔՍԻԴ_ԴԻՄԵԹԻԼԱՆԻԼԻՆ ՌԵԱԿ8ԻԱՅԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ ԲԵՆԶՈԼ_ՊԻՐԻԴԻՆ ԵՎ ԲԵՆԶՈԼ–ՀԵՔՍԱՆ ԲԻՆԱՐ ԽԱՌՆՈՒՐԴՆԵՐՈՒՄ

է. Ռ. ՍԱՐՈՒԽԱՆՅԱՆ և Ն. Մ. ԲԵՅԼԵՐՑԱՆ

Ցույց է տրված, որ բենզոիլպերօքսիդ-դիմեβիլանիլին ռեակցիայի հարուցման փուլի արագությունը բենղոլ-պիրիդին խառնուրդներում պիրիդինի կոնցենտրացիայի մեծացման հետ մեծանում է և արագության հաստատունի կախումը լուծիչի բաղադրությունից նկարագրվում է

$$K_{t\phi} = K_{\mu\nu\sigma} \left[\mu b \nu q \sigma_l \right] + K_{\tau b \tau b} \left[\omega p \rho b \gamma b \nu \right]$$

հավասարումով։

Հեքսան-րենզոլ խառնուրդներում բենզոլի կոնցենտրացիայի մեծացման հետ արագությունը աճում է՝

$$K_{t\phi} = K_{t\phi_{\phi}} \left[k h_{\phi} n \right] + K_{c\phi_{\phi}} \left[\rho h h_{\phi} \right]^{2}$$

ծնթադրվում է, որ լուծիչի ազդեցությունը հարուցման փուլի արագության վրա առավնլ չափով պայմանավորված է լուծիչի հիմնայնությամբ։

INVESTIGATION OF THE BENZOYL PEROXIDE-DIMETHYLANILINE REACTION IN BENZENE-PYRIDINE AND BENZENE-HEXANE BINARY MIXTURES BY THE ESR METHOD

E. R. SAROUKHANIAN and N. M. BEYLERIAN

It has been shown that the initiation rate of the benzoyl peroxidedimethylaniline reaction in benzene-pyridine mixtures increases with an increase in the pyridine concentration. The initiation rate constant and solvent concentration dependence is expressed by the equation

$$K_{ef} = K_b \left[C_e H_e \right] + K_{pyr} \left[C_5 H_5 N \right]$$

In hexane-benzene binary solutions an increase in the benzene concentration brings to an increase in the initiation rate.

ЛИТЕРАТУРА

 О. А. Чалтыкян, Сб. «Вопросы хим. кин. и реакционноспособ.», М., Изд. АН СССР, 1955, стр. 354.

2. L. Horner, C. Betzel, Liebigs Ann., 579, 175 (1953).

- 3. K. F. O'Driscoll, E. N. Richezza, J. Polymer Sci., 46, 211-216 (1960).
- 4. С. Д. Ставрова, Г. В. Перегудов, М. Е. Маргаритова, ДАН СССР, 157 (3), 636 (1964).
- 5. L. Horner, B. Anders, Ber., 95, 2470 (1962); [C. A., 55, 3500 (1963)].
- 6. Д. Победимский, А. Бучаченко, М. Нейман, ЖФХ, 43, 1436 (1968). 7. Ch. Walling, N. Indictor, J. Am. Chem. Soc., 80, 5814 (1958).
- 8. Th. H. Meltzer, A. V. Tobolsky, J. Am. Chem. Soc., 76, 5178 (1954).
- 9. Sh. Hasegawa, S. Kashino, J. Mukane, Bull. Chem. Soc., Japan, v. 44, (1971).

10. D. M. Graham, R. B. Mesrobian, Can. J. Chem., 41, 2945 (1963).