XXXI, № 8. 1978

УДК 621.547+66.096.5

ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ ДВИЖУЩЕГОСЯ ЗЕРНИСТОГО СЛЮЯ

Р. М. МИРЗАХАНЯН

Ереванский политехнический институт им. К. Маркса Поступило 6 XII 1977

Предложены уравнения для расчета гидравлического сопротивления движущегося зернистого слоя, применяемого в химических реакторах и других аппаратах химической технологии, работающих в псевдоожиженном слое.

Рис. З, табл. І, библ. ссылок 4.

Осуществление химических реакций является одной из важнейших областей применения техники псевдоожижения. В реакциях участвуют ожижающий агент (газ или жидкость) и твердые частицы, причем последние обычно в качестве катализатора. В химической промышленности широко распространены аппараты, работающие с движущимся в плотном слое псевдоожиженным зернистым материалом. В таких аппаратах происходит движение газа (реже жидкости) через поры между частицами более медленно движущегося плотного слоя. По этому принципу работают, например, реакторы каталитического крекинга углеводородов, разложения озона, пневмотранспортные установки и др. При проектировании таких аппаратов важным вопросом является определение гидравлического сопротивления движущегося зернистого слоя, которое отличается от сопротивления неподвижного слоя вследствие изменения структур пор при движении частиц. Имеющиеся в литературе сведения относятся в основном к неподвижным слоям [1, 2]. В настоящей статье на основании анализа опытных данных пневмотранспорта различных зернистых материалов даются обобщенные уравнения для определения перепада давления в движущемся слое. Опыты проводились на установках с вертикальными и горизонтальными транспортными трубами длиной 1 м, диаметрами D=0,04; 0,068 и 0,1 м, в которых получаются сплошные потоки зернистого слоя (рис. 1 а, б) [3]. Пористость слоя е меняется незначительно и практически равна пористости наирыхлого неподвижного слоя данного зернистого материала. Перепады давления **ДР** измерялись на конечных участках труб длиной 1=0,25 м при помощи дифференциальных жидкостных манометров, расходы твердых частиц и воздуха-при помощи весов и газосчетчика. Характеристики испытуемых материалов приведены в таблице, где d — дизметр эквивалентного шара, имеющего тот же объем, что и бесформенные ча-

Армянский химический журнал, ХХХІ, 8-3

стицы данного материала; _{Рт}-плотность частиц; Ф-фактор формы частиц-отношение поверхности эквивалентного шара к поверхности частицы, определяемое по известным в литературе методам [2].

Рис. 1. Опытные установки.

Таблица

Характеристики зеринстых материалов

Матернал	d, мм	ρ _T , K2/M ³	8	Φ
Вермикулит	0,33	392	0,577	0,755
Кварцевый песок	0,23	2640	0,470	0,828
Перлит	0,45	143	0,580	0,787
Карбамнд	1,08	1335	0,435	0,875
Пшеннца	3,57	1334	0,430	0,800
Алюмосиликат	3,25	1260	0,460	1,000

Перепад давления ΔP свободно движущегося слоя небольшой длины определяется уравнением

$$\Delta P = \Delta P_0 + \Delta P_{\tau} \tag{1}$$

где ∆*P*₀—перепад давления, при котором начинается пневмотранспорт; ∆*P*₇—потери давления на трение движущихся частиц о стенки трубопровода.

На коротких участках трубы ΔP обусловливается гидравлическим сопротивлением слоя движущемуся через его поры воздуху.

Для расчета ΔP может быть использовано известное уравнение определения перепада давления неподвижного слоя с введением в него скорости воздуха *и* относительно движущихся частиц.

$$\Delta P = \lambda \frac{3(1-\varepsilon)}{2\varepsilon^2 \Phi} \cdot \frac{l}{d} \cdot \frac{\rho u^2}{2}$$
(2)

где λ-коэффициент сопротивления, ρ-плотность воздуха. λ зависиг от гидродинамического режима движения воздуха через поры слоя, определяемого величиной критерия Рейнольдса

$$Re = \frac{2u\rho\Phi d}{3(1-\varepsilon)\mu}$$
(3)

где и-вязкость воздуха.

Скорость и относитстя ко всему сечению трубы и определяется уравнением

$$\boldsymbol{u} = (\boldsymbol{w} - \boldsymbol{\beta}) \boldsymbol{\varepsilon} \tag{4}$$

ω — скорость воздуха в порах движущегося слоя; β — скорость движения частиц. Эти скорости определяютоя уравнениями

$$w = \frac{Q}{Fe} \tag{5}$$

$$\beta = \frac{G}{F\rho_{\tau}(1-\varepsilon)} \tag{6}$$

где Q—объемный расход воздуха; F—площадь поперечного сечения трубы; G—массовый расход твердых частиц.

Коэффициент λ представим в виде функции

$$\lambda = \frac{A}{\text{Re}} + B \tag{7}$$

А и В не являются постоянными величинами. Несмотря на незначительное изменение є с увеличением скорости и меняются взаимнос расположение частиц и форма каналов между частицами. Криволинейность каналов уменьшается, каналы носят более упорядоченный характер и, следовательно, уменьшаются гидравлическое сопротивление и коэффициент λ .

В результате обработки опытных данных найдено следующее уравнение для определения λ:

$$\lambda = \frac{122,3}{\text{Re}} \cdot \frac{u_0}{u} + 2,34 \left(\frac{u_0}{u}\right)^{0.25}$$
(8)

где u_0 —скорость воздуха в точке начала пневмотранспорта. Для вертикального потока эта скорость— u_{0B} , есть скорость начала псевдоожижения и может определяться известными в литературе методами. В горизонтальной трубе пневмотранспорт начинается при скорости u_{0r} , меньшей, чем u_{0B} . Эти скорости связаны следующим соотношением [4]:

$$u_{0r} = 0,733 u_{0s} \tag{9}$$

На рис. 2 в координатах $\lambda \left(\frac{u}{u_0}\right)^{0.25}$ и $\operatorname{Re}\left(\frac{u}{u_0}\right)^{0.75}$ приведено расположение опытных точек на одной кривой линии, что подтверждает точность уравнения (8). Перепад давления ΔP_0 для вертикального потока равен весу частиц в аэросмеси, отнесенному к единице поперечного сечения слоя.

$$\Delta P_0 = \mu_r g \left(1 - s\right) l \tag{10}$$

Для горизонтального потока ΔP_0 можно определить уравнением (2), подставляя в него и в уравнения (8) и (3), определяющие λ и Re, значение u_{0r} вместо u.

Рис. 2. Зависимость $\lambda \left(\frac{u}{u_0}\right)^{0.25}$ от $\operatorname{Re}\left(\frac{u}{u_0}\right)^{0.75}$ в горизонтальных и вертикальных трубах днаметрами $D = 0.04, 0.068, 0.1 \, \text{м.}$ 1 — бермикулит; 2 — кварцевый песок, 3 — перлит, 4 — карбамид, 5 — ишеница, 6 — алюмосиликат.

Многочисленными опытами установлено, что ΔP_{τ} зависит от β , ρ_{τ} , g, l, D, d, Φ , $(1 - \varepsilon)$. Пользуясь методом анализа размерностей, можно представить эту зависимость в виде функции между безразмерными комплексами величин.

$$\frac{\Delta P_{\tau}}{\rho_{\tau} (1-e)\beta^2} = C \left(\frac{\beta^2}{gD}\right)^x \left(\frac{d}{D}\right)^y \left(\frac{l}{D}\right) \frac{1}{\Phi^n}$$
(11)

Первые два комплекса представляют собой модифицированные критерии Эйлера и Фруда.

$$\frac{\Delta P_r}{\rho_r (1-\varepsilon)\beta^2} = Eu, \quad \frac{\beta^2}{gD} = Fr$$

Обработкой опытных данных методом наименьших квадратов найдены числовые значения коэффициента C и показателей степеней x, y, m, n: для вертикального потока C=2,56, для горизонтального C=2, x=-0.8, y=0.3, m=n=1. Таким образом, уравнение для определения ΔP_{x} можно представить в виде

$$Eu = \frac{C}{Fr^{0.8}\Phi} \cdot \left(\frac{d}{D}\right)^{0.3} \frac{l}{D}$$
(12)

На рис. З представлен корреляционный график в виде зависимости безразмерных комплексов. Прямые линии для вертикального и горизонтального потоков описываются уравнением (12), отклонение опытных точек от расчетных не превышает 10%.

Рис. 3. Корреляция данных по перепаду давления при вертикальном (I) и горизонтальном (II) транспорте по трубам диаметрами D = 0,04, 0,068, 0,1 м. 1 — вермикулит, 2 — кварцевый песок, 3 — перлит, 4 — карбамид, 5 — пшеница, 6 — алюмосиликат.

Приведенные уравнения позволяют достаточно точно определить гидравлическое сопротивление ΔP и скорость воздуха u в движущемся слое зернистых материалов по вертикальным и горизонтальным направлениям.

ՇԱՐԺՎՈՂ ՀԱՏԻԿԱՎՈՐ ՇԵՐՏԻ ՀԻԴՐԱՎԼԻԿԱԿԱՆ ԴԻՄԱԴՐՈՒԹՅՈՒՆԸ

Ռ. Մ. ՄԻՐՉԱԽԱՆՑԱՆ

Տարբեր սորուն նյութերի պնևմոտրանսպորտի փորձնական տվյալների Հիման վրա առաջարկված են ընդՀանրացնող բանաձևեր՝ ջիմիական տեխնոլոգիայի ապարստոներում կիրառվող շարժվող Հատիկավոր շերտերի Հիդրավլիկական դիմադրությունը որոշելու Համար։

Р. М. Мирэаханян

HYDRAULIC RESISTANCE OF A MOVING FLUIDIZED GRANULAR BED

R. M. MIRZAKHANIAN

Generalizing equations have been suggested for the estimation of the pressure drop in a moving fluidized bed based upon experimental data obtained from the pneumotransport of various loose materials.

ЛИТЕРАТУРА

- 1. Н. Н. Гельперин, А. М. Каган, Г. И. Криницына, Хнм. пром., 1977. 147.
- 2. М. Э. Аэров, О. М. Тодес, Гидравлические и тепловые основы работы аппаратов са стационарным и кипящим зеринстым слоем, Изд. «Химия», Л., 1968, стр. 60.
- 3. Р. М. Мирзаханян, А. М. Гаспарян, Изв. АН Арм. ССР (сер. техн. наук), 21, № 3 (1968).
- 4. Н. Х. Даниелян, Р. М. Мирзаханян, Межвузовский сб. научи. тр., серия XIX. хим. техн., вып. 1, 1974, стр. 325.