XXXI, № 6, 1978

УДК 542.91+547.314

ЭФИРЫ НЕКОТОРЫХ КЕТОКИСЛОТ

В. С. АРУТЮНЯН, М. Г. ЗАЛИНЯН и М. Т. ДАНГЯН

Ереванский государственный университет

Поступило 21 VII 1977

Конденсацией кетокислот с галогенопроизводными в присутствии триэтиламина получены их эфиры с высожими выходами.

Табл. 3, библ. ссылок 4.

Ранее [1] нами разработан удобный способ получения симметричных и смешанных эфиров дикарбоновых кислот конденсацией последних с галогенопроизводными в присутствии триэтиламина. В настоящей работе показано, что метод может быть успешно применен к кетокислотам. В качестве объектов изучения выбраны левулиновая, у-ацетилмасляная, у-ацетилвалерьяновая, с-изоамил-у-ацетилвалерьяновая кислоты.

Во всех случаях получены соответствующие эфиры с высокими выходами.

R=H, изо-C₅H₁₁; R'=H, CH₄; R"=алкил, алкенил

Строение полученных эфиров доказано встречным синтезом—прямой этерификацией кислот спиртами.

Экспериментальная часть

ИК спектры сняты на приборе UR-10. Для всех полученных эфиров обнаружены интенсивные полосы поглощения при 1710, 1715, 1720 (С=О, кетон), 1740 (С=О, сл. эф.), 1230, 1245 см⁻¹ (С—О—С). Для аллиловых, у,у-дихлораллиловых, хлоркротиловых эфиров также—1640 (С = С), 860, 880 см⁻¹ (С—С1).

Чистота полученных продуктов проверена методом ГЖХ на приборе ЛХМ-8МД с катарометром. Твердый носитель chromaton N-AN-DMCS (0,25—0,315 мм), пропитанный 5% silicon SE-30. Размеры колонок 2000 мм×3 мм. Газ-носитель—гелий, 60 мл/мин, температура 200—250°.

β-Метил-ү-кетобутилмалоновый эфир (I). К смеси 120 г (0,75 моля) малонового эфира, 42 г (0,5 моля) метилизопропенилкетона при 30°

прикапывают этилат натрия (0,5 z натрия в 20 $M\Lambda$ абс. этанола), поддерживая температуру 40—45°. После добавления смесь перемешивают при комнатной температуре 3 часа и 1,5 часа при 50°. Затем охлаждают, нейтрализуют уксусной кислотой и добавляют воду. Органический слой экстрагируют эфиром, промывают водой и сушат над сульфатом магния. После удаления эфира остаток перегоняют в вакууме при $106^\circ/4$ MM. Выход 105.2 z (86.2%), n_D^{20} 1.4380, d_D^{20} 1.0550, d_D^{20} d_D^{20} d

 γ -Ацетилвалерьяновая кислота получена кислотным гидролизом кетоэфира I с выходом 92%, т. кип. 119—120°/1 мм, n_D^{20} 1,4470, идентично полученной по [2].

у-Ацетилмасляная кислота получена по [3'], а а-изоамил-у-ацетил-

валерьяновая-по [4].

Эфиры 2,4-дизамещенных-5-оксогексановых кислот. а). К смеси 0,05 моля соответствующей кетокислоты и 8 мл триэтиламина 'при перемешивании и охлаждении водой прикапывают 0,05 моля галогенпроизводного. Перемешивают 0,5 часа при комнатной температуре, затем 2—3 часа при 85—95°. После охлаждения добавляют воду и перемешивают до растворения осадка. Экстрагируют эфиром, экстракты обрабатывают 5% раствором соды до рН 8. Органический слой промывают водой и сушат над сульфатом магния. После отгонки эфира остаток перегоняют в вакууме. Данные приведены в табл. 1—3.

Эфиры 7-ацетилвалерьяновой кислоты

Таблица 1

R	Выход, °/0	Т. кнп., °С/мм	n _D ²⁰	d ²⁰	Найдено, %/0			Вычислено, %		
					С	Н	Cı	С	н	CI
C ₂ H ₅	91	75—76/1	1,4318	0,9836	62,90	9,23	_	62,82	9,31	9_1
C ₄ H ₉	92	95-96/2	1,4339	0,9556	66,11	10,00	1-	66,00	10,00	_
CH ₂ =CHCH ₂	84	118/3	1,4440	1,0020	65,35	8,85	_	65,24	8,70	_
Cl ₂ C=CHCH ₃	76	107 108/3	1,4778	1,2105	46,41	5,50	28,44	46,43	5,53	28,40
CH3CCI=CHCH3	80	123/2	1,4669	1,0838	56,86	7,44	15,42	56,45		15,30
C ₆ H ₅ CH ₂	86	144/4	1,5002	1,0591	71,76	7,64		71,83	7,69	

б) Смесь 0,1 моля кетокислоты, 0,4 г п-толуолсульфокислоты, 0,2 моля спирта и 60 мл бензола кипятят до прекращения выделения воды. Охлаждают, промывают 5% раствором соды, водой и сушат над сульфатом магния. После удаления растворителей остаток перегоняют в вакууме. Выход 80—90%. Этим способом получены этиловые, бутиловые и бензиловые эфиры.

Таблица 2

Эфиры	2-изовинл-	-ацетилвале	повонка	кислоты
-------	-------------------	-------------	---------	---------

R	Выход, 0/0	Т. кип., °С/мм	n ²⁰	d ₄ ²⁰	Найдено, %			Вычислено, 0/0		
					С	Н	CI	С	н	CI
C ₂ H ₅	90	112—113/1	1,4370	0,9263	69,30	10,60	_	69,42	10,74	
C ₄ H _e	86	100—101/2	1,4411	0,9196	71,12	11,00		71,15	11,11	_
CH ₂ =CHCH ₂	87	105—106/4	1,4464	0,9343	70,74	10,23	_	70,82	10,26	_
Cl ₂ C=CHCH ₂	77	129/4	1,4690	1,0850	55,70	7,42	21,70	55,74	7,44	21,97
CH ₃ CC1=CHCH ₂	89	126/4	1,4636	1,0179	63,55	9,00	11,66	63,45	8,93	11,73

Таблица 3

Эфиры ү-ацетилмасляной кислоты

R	Выход, 0/0	Т. кип., °С/мм	n ²⁰	d ₄ ²⁰	Найдено, ⁰/ ₀			Вычислено, •/•		
					С	Н	Cı	С	Н	CI
C ₄ H ₉	95	78—79/1	1,4320	0,9668	64,43	9,72	_	64,50	9,68	_
CH ₂ =CHCH ₂	79	83/3	1,4442	1,0165	63,50	8,33	1-9	63,53	8,23	200
Cl ₂ C=CHCH ₂	73	108/1	1,4790	1,2290	45,27	5,00	29,82	45,18	5,02	29,70
CH3CCI=CHCH3	88	104/1	1,4679	1,1119	54,85	6,90	16,20	54,94	6,87	16,24
C ₆ H ₅ CH ₂	80	120.2	1,5032	1,0718	71,00	7,35	-	70,92	7,31	-

ՄԻ ՔԱՆԻ ԿԵՏՈԹԹՈՒՆԵՐԻ ԷՍԹԵՐՆԵՐ

4. U. LUPANPSANISUL, U. A. QUINISUL & U. S. AULYSUL

Կետոթթուների և Հալոգենածանցյալների փոխազդեցությամբ տրիէթիլամինի ներկայությամբ ստացված են նրանց էսթերները։

ESTERS OF SOME KETOACIDS

V. S. HARUTYUNIAN, M. G. ZALINIAN and M. T. DANGHIAN

Esters of some ketoacids have been prepared in high yields by condensing the corresponding ketoacids with halogen derivatives in the presence of triethylamine.

ЛИТЕРАТУРА

- 1. В. С. Арутюнян, Л. О. Ростомян, М. Г. Залинян, М. Т. Дангян, Арм. хим. ж., 31, 341 (1978).
- 2. Л. Я. Левина, Н. П. Шушерина, М. Ю. Лурье, ЖОХ, 24, 1439 (1954).
- 3. Н. П. Шушерина, Т. Х. Гладиева, Е. Г. Треозова, Л. Я. Левина, ЖОрХ, 1, 673 (1965).
- 4. О. А. Саркисян, Ш. А. Казарян, В. С. Арутюнян, М. Г. Залинян, М. Т. Дангян, Арм. хнм. ж., 23, 431 (1970).