XXXI, № 5, 1978

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.292+541.61+315.2

ИССЛЕДОВАНИЯ В ОБЛАСТИ АМИНОВ И АММОНИЕВЫХ СОЕДИНЕНИЙ

СХХХVIII. ВНУТРИМОЛЕКУЛЯРНАЯ ЦИКЛИЗАЦИЯ АЛЛИЛ-2,4-ПЕНТАДИЕ-НИЛ (ФУРФУРИЛ) АМИДОВ КАРБОНОВЫХ КИСЛОТ

> Р. С МКРТЧЯН, Т. Р. МЕЛИКЯН, Г. О. ТОРОСЯН, К. Ц. ТАГМАЗЯН и А. Т. БАБАЯН

Институт органической химии АН Армянской ССР, Ереван Поступило 2 XII 1977

Исследована реакция внутримолекулярной циклизации аллил-2,4-пентадиенил (фурфурнл) амидов триметил- и трифторумсусной кислот, приводящая к образованию производных 2-ацил-3а,4,5,7а-тетрагидро- и -5,7а-эпокснизонидолинов. Установлено, чго скорость реакции зависит не только от стерических, но и от стереоэлектронных факторов.

Табл. 3, библ. ссылок 8.

Ранее было показано, что по своему положительному влиянию на скорость циклизации аллил-2,4-пентадиенил (фурфурил) амидов карбоновых кислот ацильные группы располагаются в следующем порядке:

О СІСН₂С > С₂Н₅С > СІ₃С — С > СН₃С [1]. С целью расширения приведенного ряда нами исследована внутримолекулярная циклизация аллил-2,4-пентадиенил (фурфурил) амидов триметил- и трифторуксусной кислот, приводящая к образованию 2-ацил-3а,4,5,7а-тетрагидро- и -5,7а-эпоксиизоиндолинов, соответственно.

Циклизация осуществлена нагреванием исходных амидов на кипящей водяной бане. Исходные амиды получены взаимодействием хлорангидрида триметилуксусной и ангидрида трифторуксусной кислот с аллил-2,4-пентадиенил (фурфурил) аминами (табл. 1).

Изучена кинетика циклизации (табл. 3). Дополняя вышеприведенный ряд, получаем следующую последовательность:

Ранее нами предполагалось, что увеличение объема заместителя при карбонильной группе должно приводить к замедлению циклизации [1]. Однако кинетические исследования показывают, что скорость реакции увеличивается при переходе от амида уксусной к амиду триметилуксусной кислоты. По-видимому, это связано с различием в конформациях изученных систем [2]. Поскольку диен и диенофил находятся в одном субстрате, то нижеприведенное конформационное равновесие становится определяющим

По всей вероятности, при переходе от метильного заместителя к трет. бутильному начинает преобладать конформация Б, где диен и диенофил более сближены. Казалось, что замена водородных атомов в ацильной группе на хлор и фтор должна способствовать циклизации, т. к. благоприятное влияние ацильной группы связано с р-п сопряжением, приводящим к частичному ониевому состоянию атома азота [3, 4]. В случае амидов трихлор- и трифторуксусной кислот наблюдается аномальное явление-понижение скорости циклизации. Известно, что при наличии в молекуле электронооттягивающих групп и свободных электронных пар относительная стабильность конформеров обусловлена не только стерическими, но и стереоэлектронными факторами. Особенно это относится к реакциям, протекающим с синхронным механизмом [5]. Наличие стереоэлектронных взаимодействий, по-видимому, обусловливает понижение скорости циклизации амидов трихлоруксусной кислоты. В монохлоруксусном аналоге такие взаимодействия сведены к минимуму, поэтому скорость реакции в этом случае наибольшая. Согласчо литературным данным, уменьшение порядкового номера галогена приводит к уменьшению стереоэлектронных взаимодействий [6]. Этим можно объяснить повышение скорости циклизации в случе амидов II и IV по сравнению с трихлораналогами.

Индивидуальность исходных амидов и продуктов циклизации установлена ТСХ, состав—элементным, строением—ИК и УФ спектральными анализами (табл. 1,2), в скучае IV и IVа—данными ПМР, в случае IIа—химическим путем—гидролизом амида в За,4,5,7а-тетрагидроизонидолин (V).

Экспериментальная часть

ТСХ осуществлена на пластинках «Silufol UV-254» (проявление парами йода). Кинетические исследования проводились спектрофотометрическим методом на приборе СФ-4А.

Таблица 1

1.	1		Т. кип., °С/мм	d ²⁰	n <mark>D</mark>	N, %		1			
№ соединения	Buxoa, º/.					наплено	вычислено	\c=сн,		0=0	УФ(<i>нж</i>
1	84	0,61*	132—133/2	0,9122	1,4880	6,84	6,71	925, 980, 3080	1600	1660	220
11	80	0,80*	85-86/4	1,1183	1,4360	6,55	6,39	930, 3090	1600, 1640	1680	220
III	88	0,63*	152 – 153/2	0,9951	1,4982	6,48	6,33	920, 970, 3080	1505, 3130	1650	220
IV	92	0,56*	45-47/1,1.10-2	1,2319	1,4504	6, 15	6,01	925, 3090	1510, 3140, 1600	1685	220

Эфир: бензол, 5:1.

Циклизация амидов I—IV при 90—95°

Таблица 2

N соеди- нения	Выход, "/0	R _f	Т. кнп., °С/мм	т. пя., °С	d ²⁰	n <mark>2</mark> 0	найдено	вычнс-	ИКС, см ⁻¹
Ia	88	0,43*	148—149/1	1 -12	0,9839	1,5028	6,52	6,71	1630
- IIa	85.	0,60*	142-143/4	W	1,2794	1,4411	6,42	6,39	1670
Illa.	90	0,51*	WE TO STAN	82-83	W	1000	6,43	6,33	1620
IVa	95	0,78*	85—87/10 ⁻²	65 –66		- I	5,87	6,01	1675

[•] Эфир: бензол, 5:1.

N-Аллил-N-фурфуриламид трифторуксусной кислоты (IV). Смесь двухмольного количества N-аллил-N-фурфуриламина и трифторуксусного ангидрида в абс. эфире при 0° интенсивно перемешивалась 30 мин.

После чего реакционная смесь фильтровалась от выпавшего ацетата, фильтрат промывался водой, эфирный слой отделялся и перегонялся (табл. 1). ПМР, 60 мгц, 3, м. д.: 7,05 (с, O—CH=); 5,9 (с, =CH—CH=).

4,9 (M, $-CH=CH_2-$), 4,2 (c, $H-CH_2-C=$), 3,63 (π , $N-CH_2-$).

2 - Трифторацетил - За,4,5,7а - тетрагидро - 5,7а - эпоксиизоиндолин (IVa). Исходный амид IV нагревался на кнпящей водяной бане в течение 7 час. Реакционная смесь перегонялась (табл. 2). ПМР, 60 мгц,

3, м. д.: 6,2 (с, —CH=CH—), 5,85 (д, O—CH—), 3,8 (м, N
$$\stackrel{\text{CH}_3}{\sim}$$
), 1,5—1,8 (м, —CH—CH₂—).

Щелочной гидролиз амида IIa осуществлен по [7], синтез амидов триметилуксусной кислоты — по [8].

Таблица 3 Кинетические данные циклизации амидов в водном растворе

Сослинение	<i>T</i> , ℃	К·10², мин ^{−1}	Е, ккал/моль	lg A	—∆S ⁺ , энтр. ед.	K×10 ² , 		
O CH ₃ CH=CH ₃ CH ₃ CH=CHCH=CH ₃	56,2 65,3 75,5 86,3	0,042 0,101 0,270 0,670	21,55	11,00	10,16	0,0069		
O CH ₂ CH=CH ₂ F ₃ CCN CH ₂ CH=CHCH=CH ₂	55,3 66,2 75,2 85,5	0,086 0,182 0,350 0,710	16,23	7,77	24,95	0,0264		
(CH ₃) ₃ CCN CH ₂ CH=CH ₃	56,0 65,1 75,0 86,3	0,131 0,290 0,740 1,870	20,67	10,89	10,69	0,0219		
GH ₃ CH ₂ CH ₂ CH ₂ CH ₃	55,5 65,8 75,5 84,5	0,180 0,370 0,790 1,520	16.98	8,59	21,21	0,0445		

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԱՄԻՆՆԵՐԻ ԵՎ ԱՄՈՆԻՈՒՄԱՅԻՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

CXXXVIII. ԿԱՐԲՈՆԱՑԻՆ ԹԹՈՒՆԵՐԻ ԱԼԻԼ-2,4-ԳԵՆՏԱԴԻԵՆԻԼ (ՖՈՒՐՖՈՒՐԻԼ) – ԱՄԻԳՆԵՐԻ ՆԵՐՄՈԼԵԿՈՒԼԱՅԻՆ ՑԻԿԼՈՒՄ

> ቡ. ሀ. ሆካዮያያያሁን, Տ. Ռ. ՄԵԼԻՔՑԱՆ, Գ. Հ. ԹՈՐՈՍՑԱՆ, Կ. Ծ. ԹԱՀՄԱԶՑԱՆ և Ա. Թ. ԲԱԲԱՑԱՆ

Ներկա Հաղորդոանը նվիրված է տրիֆտոր- և տրիմեթիկջացախանթիվի ալիլ-2,4-պենտադիենիվ(ֆուրֆուիկ)անիդների ներմոլեկուլարին ցիկլման ուսումնասիրմանը։ Կատարված են կինետիկական ուսումնասիրություններ։ Ցույց է տրված, որ ցիկլման արագությունը կախված է տարածական և ստերեռէլեկտրոնային փոխազդեցություններից։

INVESTIGATIONS IN THE FIELD OF AMINES AND AMMONIUM COMPOUNDS

CXXXVIII. INTRAMOLECULAR CYCLIZATION OF ALLYL-2,4-PENTADIENYL-(FURFURYLCARBOXYLIC ACID AMIDES

R. S. MKRTCHIAN, T. R. MELIKIAN, G. H. TOROSSIAN, K. Ts. TAHMAZIAN and A. T. BABAYAN

It has been shown that ally1-2,4-pentadienyl(furfuryl)carboxylic acid amides undergo intramolecular cyclization on heating at 90—95°C forming tetrahydro and epoxylsoindoline derivatives.

The yields of the cyclization products were almost quantitative.

ЛИТЕРАТУРА

- 1. Т. Р. Меликян, Г. О. Торосян, Р. С. Мкртчян, К. Ц. Тагмазян, А. Т. Бабаян, Арм. хнм. ж., 30, 156 (1977).
- 2. Heinz W. Gschwend, Avelina O. Lee, J. Org. Chem., 38, 2169 (1973).
- 3. L. H. Klemm, T. M. McGuire, K. W. Gopinath, J. Org. Chem., 41, 2571 (1976).
- 4. А. Т. Бабаян, К. Ц. Тагмазян, А. И. Иоффе, Р. С. Мкртчян, Г. О. Торосян, ДАН Арм. ССР, 58, 275 (1974)
- Н. С. Зефиров, ЖВХО, 22, 261 (1977).
- 6. Дж. Стоддарт, Стереохимия углеводородов, Изд. «Мир», М., 1975.

and and office after the first of which is a second

- 7. Г. О. Торосян, Р. С. Мкртчян, Г. Р. Меликян, К. Ц. Тагмазян, А. Т. Бабаян, Арм. хим. ж., 30, 579 (1977).
- 8. А. Т. Бабаян, Т. Р. Меликян, Г. О. Торосян, Р. С. Мкртчян, К. Ц. Тагмазян, Арм. хнм. ж., 29, 389 (1976).