<u> 2 Ц 3 Ч Ц 4 Ц 5 Р Г Р Ц 4 Ц 5 Ц Г И Ц 4 Р Р</u> АРМЯНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ

XXXI, № 11, 1978

УДК 542.921+547.33.34+547.435

ИССЛЕДОВАНИЯ В ОБЛАСТИ АМИНОВ И АММОНИЕВЫХ СОЕДИНЕНИЙ

СХІ. ПОВЕДЕНИЕ АММОНИЕВЫХ СОЛЕЙ, СОДЕРЖАЩИХ ЗАМЕЩЕННУЮ КАРБАЛКОКСИМЕТИЛЬНУЮ ГРУППУ, В РЕАКЦИЯХ СТИВЕНСОВСКОЙ ПЕРЕГРУППИРОВКИ И \$-ОТЩЕПЛЕНИЯ

С. Г. КОЧАРЯН, В. В. ГРИГОРЯН и А. Т. БАБАЯН

Институт органической химпи АН Армянской ССР, Ереван

Поступило 5 VII 1978

Показано, что соли аммония, содержащие наряду с β, т-непредельной группой способную к β-отщеплению 1-карбалкокси-3-бутенильную группу, под действием алкоголята натрия в эфирной среде в основном подвергаются стивенсовской перегруппировке с образованием аминоэфиров с разветвленной структурой. На примере соли I установлено, что в спиртовой среде в основном имеет место реакция отщепления.

Табл. 1, библ. ссылок 3.

Согласно литературным данным, аммониевые соли, содержащие группы, способные к β-отщеплению, под действием щелочных агентов в основном подвергаются гофмановскому расщеплению с образованием олефина и третичного амина. Реакция направляется в сторону перегруппировки лишь в том случае, когда β-отщепление затруднено [1].

Настоящая работа посвящена изучению поведения аммониевых солей I—VI в условиях стивенсовской перегруппировки (табл.).

Предполагалось, что менее полярные и апротонные растворители должны способствовать направлению а. Поэтому взаимодействие солей I— VI с алкоголятом было проведено в эфире, а в случае соли I для сравнения также и в спирте.

Армянский химический журнал, XXXI, 11-3

Исходная соль, №	Продукты перегруппировки СН ₃) ₃ N—С СН3—СН—СН ₂ СНХ—СҮ—СН ₃ СООСН ₃			%	Т. кнп., °С/.и <i>м</i>	11 D	Найдено, °/о			Вычислено, °/,			ИК спектр, см ⁻¹
Исхо	x	Y	№	Выход,			C	Н	N	С	Н	N	
I	Н	П	la	74**	83—85/3	1,4660	66,73	10,02	7,32	66,96	9,72	7,10	920, 1645, 1735, 3085
II	Н	CH3	Ila	70	73—74/4	1,4688	67,89	9,86	6,54	68,19	10,03	6,62	920, 1645, 1730, 3090
111	CH3	Н	Illa	62	88—89/3	1,4740	68,28	10,26	6,75	68,19	10,03	6,62	920, 1650, 1735, 3090
IV	C _e H ₅	Н	ĮVa	59	132—135/1	1,5320	74,99	8,99	5,33	74,68	8,49	5,12	925, 1005, 1650, 1735, 3090
V*	H CH ₃		Va*	45	145—146/3	1,4850	71,03	9,89	5,72	70,83	9,78	5,90	920, 1645, 1735, 3085
VI	(CH ₃) ₂ NC	C=C=CH ₂ CH ₂ CH=CH ₂ CCH ₃	Vla	61	7981/7	1,4910	68,77	8,93	6.49	68,85	9,16	6,69	920, 1645, 1735, 1970, 3090

^{*} У азота пентаметиленовая группа.
** Выход в спиртовой среде 16%.

Как видно из данных таблицы, под действием эфирной суспензии метилата натрия главным направлением реакции является стивенсовская перегруппировка (путь а), приводящая к образованию труднодоступных аминоэфиров с разветвленной структурой с хорошими выходами. Продуктов расщепления получается лишь 8—16%.

Из таблицы видно также, что на выход продукта перегруппировки заметное влияние оказываєт природа алкильных групп у азота (соли I и V).

Следует отметить, что при перегонке аминоэфир IVa частично подвергается термической изомеризации с образованием соединения IVб. Выделить IVa в практически чистом виде удается при очень быстрой перегонке небольшими порциями на предварительно нагретой масляной бане. Для получения чистого IVб продукт перегруппировки IVa предварительно нагревается 2 часа при 175—180°, затем перегоняется.

$$(CH_3)_2NC-CH_1CH=CH_2$$

$$(CH_3)_2NC-CH_1(C_6H_5)CH=CH_2$$

$$COOCH_3$$

$$(CH_3)_2NC-CH_2CH=CH_2$$

$$COOCH_3$$

$$COOCH_3$$

$$IVa$$

$$IV6$$

Перегруппировка соли VI, содержащей в качестве мигрирующей 2бутинильную группу, сопровождается изомеризацией этой группы с образованием аминоэфира VIa с алленовой группировкой.

$$(CH_3)_3N \xrightarrow{C} CH_2C \equiv CCH_3$$

$$CH_3CH = CH_3$$

$$CHCH_3CH = CH_3$$

$$CH_3)_3NC - CH_3CH = CH_3$$

$$COOCH_3$$

$$VI$$

$$VI$$

$$VIa$$

Строение продуктов перегруппировки (Ia—VIa) доказано методами ИК и ПМР спектроскопии, а чистота проверена ГЖХ.

Как и следовало ожидать, при переходе от эфирной среды к спиртовой выход продуктов расщепления резко увеличивается, а перегруппировки падает. Так, на примере соли І показано, что при проведении реакции в метаноле (28—30°) получается всего лишь 16% продукта стивенсовской перегруппировки. Наряду с этим получается сложная смесь неаминных продуктов расщепления—метиловый эфир 2.4-пентадиеновой кислоты VII и продукты присоединения метилового спирта к последнему, которым, согласно данным ГЖХ, ПМР, ИКС и элементного анализа, приписываются структуры VIII—X.

$$I \xrightarrow{CH_3OH} CH_2 = CHCH = CHC \xrightarrow{O} + Ia$$

$$VII \qquad (15^{\circ}/_{\circ})$$

$$CH_3OCH_2CH = CHCH_2C \xrightarrow{O} OCH_3$$

$$VIII$$

$$CH_3OCH_2CH = CHCOOCH_3 \xrightarrow{CH_3OH} CH_3OCH_2CHCH_2COOCH_3$$

$$IX \qquad X \qquad OCH_3$$

В ИК спектре смеси соединений VIII—Х имеются ярко выраженное поглощение в области 1660 и слабо выраженное в области 1635 c жарактерные двойным связям соединений VIII и IX, соответственно. Эти данные указывают на то, что содержание эфира IX в смеси невелико.

В спектре ПМР смеси вышеуказанных соединений (VIII—X) интегральная интенсивность сигналов от протонов у двойной связи получается гораздо меньше, чем это соответствует ненасыщенным эфирам VIII и IX.

Исходя из данных ПМР спектроскопии и элементного анализа можно сделать вывод, что в смеси продуктов присоединения основную часть составляет продукт X. Последний может образоваться как непосредственно из продукта 1,2-присоединения (IX), так и из продукта 1,4-присоединения (VIII) через IX. Не исключается, что оба продукта IX и X образуются из VIII, т. к. эфиры с β,γ-кратной связью под действием основных агентов легко изомеризуются в α,β-ненасыщенные аналоги [2].

Строение соединений VIII—X подтверждено также результатами расщепления иодистого триметил (1-карбметокси)-3-бутениламмония (XI) под действием метнлата натрия. При этом получаются те же неаминные продукты расщепления, что и в случае соли I.

Показано, что VIII—X образуются* и при взаимодействии метилового эфира 2,4-пентадиеновой кислоты (VII) с метилатом патрия в условиях перегруппировки.

Экспериментальная часть

Для снятия спектров использовались ИК спектрометры UR-20 и UR-10, ПМР спектрометр «Perkin-Elmer R-12В» (ПМР, 60 мгц). Химические сдвиги приведены в миллионных долях от внешнего эталона ТМС. ГЖХ соединений проводилась на приборе «Хром-31» с катаромет-

^{*} Показано качественно по ГЖХ.

ром (колонка-апиезон 5%, твин 10% на целите, скорость Не 60—80 мл/мин, l=1,2 м, d=6 мм).

Общее описание. К 0,03—0,05 моля соли в 30—40 мл эфира добавлялось двойное мольное количество метилата натрия*. Реакционная колба время от времени встряхивалась и охлаждалась водой. После окончания экзотермической реакции смесь нагревалась 15—20 мин. при 30—35°, затем добавлялась вода. Верхний эфирный слой отделялся, нижний экстрагировался эфиром. Соединенные эфирные вытяжки высушивались над сульфатом магния. Перегонкой выделялись продукты реакции (табл.).

Продукты расщепления—диалкилаллил- и диметил (2-бутинил) амины, идентифицировались по ГЖХ сравнением с известными образцами (8—16%). Образование соответствующих неаминных продуктов установлено на примере солей I, V и VI, приводящих к метиловому эфиру 2,4-пентадиеновой кислоты (3—5% в смеси по ГЖХ).

Перегруппировка бромистого диметилаллил (1-карбметокси-4-фенил-3-бутенил) аммония (IV). а). Опыт проведен аналогично общему описанию. Продукт перегруппировки, полученный из 3 г (0,008 моля) соли IV и 0,016 моля метилата натрия, быстро перегонялся на предварительно нагретой масляной бане ($I60^\circ$). Получено 1,3 г (IV9, 3-фенил-4-диметиламино-4-карбметокси-1,6-гептадиена (IV1, т. кнп. IV1, 132—IV1, IV2,32 с IV3, IV3, IV3, IV4, IV4, IV5, IV5, IV6, IV6, IV7, IV7, IV8, IV9, IV

б) Опыт проведен аналогично общему описанию с той лишь разницей, что после оттонки эфира остаток нагревался 2 часа при 175— 180°, затем перегонялся. Из 15 г (0,042 моля) соли IV и 0,085 моля метилата натрия получено 5,4 г (47°/0) 1-фенил-4-диметаламино-4-карбметокси-1,6-гептадиена (IVб), т. кип. 153—155°/1 мм, n_D^{20} 1,5370. Найдено °/0: С 75,02; Н 8,82; N 5,41. С₂₇H₂₃NO₂. Вычислено °/0: С 74,68; Н 8,49; N 5,12. ИК спектр, ν , c_M^{-1} : 925, 1005, 1600, 1640, 1650, 1735, 3040, 3070, 3090. Спектр ПМР, δ , м. д.: ~2,2—3,8 м (4H, CH₂), 2,50 с [N(CH₃)₂], 7,71 с (ОСН₃), ~4,8—5,5 м (СН₂=); 5,4—6,5 м (3H, CH= и CH=CH), ~7,2—7,5 м (С₆H₃).

Взаимодействие бромистого диметилаллил (1-карбметокси-3-бутенил) аммония (1) с метилатом натрия в метиловом спирте. К 10,6 г (0,038 моля) соли I добавлялось 0,08 моля метилата натрия в 15 мл метанола. После окончания экзотермической реакции смесь в течение часа оставлялась при комнатной температуре, затем добавлялись эфир и вода по 100 и 10 мл, соответственно. Эфирный экстракт подкислялся, отделялся верхний слой и высушивался над сульфатом магния. Перегонкой из колбы с дефлегматором (20 см) получено: 1) 1,5 г (35,2%) метилового эфира 2,4-пентадиеновой кислоты (VII), т. кип. 76—77°/64 мм, про 1,4820. Найдено %: С 64,42; Н 7,34. С6НвО2. Вычислено %: С 64,28;

Для начала реакции иногда добавляются 2—3 капли метанола.

Н 7,14. ИК спектр, v, cм $^{-1}$: 1603, 1645, 1730 [3]. Спектр ПМР, δ , м. д.: 3,23c(3H,OCH₃), 4,9—7,0 м (5H, CH=CH—CH=CH₂). 2) 0,9 s смеси метиловых эфиров 5-метокси-3-пентеновой (VIII), 5-метокси-2-пентеновой (IX) и 3,5-диметоксипентановой (X) кислот, перегнавшейся при 90—93°/14 мм. Найдено %: С 56,24; Н 8,13. С $_7$ Н $_12$ О $_3$. Вычислено %: С 58,33; Н 8,33 (для VIII и IX). С $_8$ Н $_{16}$ О $_4$. Вычислено %: С 54,54; Н 9,09 (для X). ИК спектр, v, cм $^{-1}$: 1660 (дизамещенная двойная связь), 1635 (сопр. дизамещенная двойная связь), 1725—1735 (сложноэфирная группировка). В спектре ПМР интегральная интенсивность протонов у двойной связи δ сн=сн 5,5—7,0 м. д.) в соединениях VIII и IX при сравнении с протонами метоксигруппы (в карбметоксиметильной группировке) соответствует 0,7 протона вместо двух.

Реакционный остаток обрабатывался ненасыщенным раствором гидроокиси калия (0—5°) и экстрагировался эфиром. Перегонкой полу-

чено 1,2 г (15%) Іа, т. кип. 88—90°/5 мм, Π_D^{20} 1,4662 (табл.).

В эфирном отгоне титрованием обнаружено 0,0224 моля (58,9%) диметилаллиламина (идентифицирован по ГЖХ сравнением с известным образцом).

Взаимодействие иодистого триметил (1-карбметокси-3-бутенил) аммония (XI) с метилатом натрия. Смесь 9 г (0,03 моля) соли XI и 0,045 моля полутвердого* метилата натрия в 20 мл эфира нагревалась в течение 3 час. при 33—35° в колбе с обратным холодильником, соединенным с поглотителем, содержащим титрованный раствор соляной кислоты. По окончании нагревания к смеси добавлялось 5 мл воды. Смесь
хорошо встряхивалась, эфирный слой отделялся, высушивался над сульфатом магния и перегонялся. Получено 1,8 г (53%) метилового эфира
2,4-пентадиеновой кислоты (VII), т. кип. 76—77°/65 мм, п²⁰ 1,4810 и
0,8 г смеси эфиров VIII—X, перегнавшейся при 88—92°/14 мм. Найдено %: С 56,64; Н 8,38. С₇Н₁₂О₃. Вычислено %: С 58,33; Н 8,33 (для VIII и IX). Вычислено %: С 54,54; Н 9,09 (для X). ИК спектр, v; см-1: 1600,
1635, 1725—1735.

Соединения VII—X по ГЖХ, идентифицировались сравнением с образцами, полученными из предыдущего опыта.

Согласно данным ГЖХ до перегонки процентное соотношение продуктов VII— X^* в смеси составляет 75 : 7 : 18, соответственно.

В результате реакции по титрации установлено образование 0,0227 моля (75,6%) триметиламина, т. пл. пикрата 215°.

Няже приводятся спектры ПМР (δ , м. д.) соединений Ia, IIIa, VIa (табл.). Ia: 1,95 с [N(CH₃)₂], ~2,0—2,3 м (4H, CH₂), 3,03 с (ОСН₃), ~4,5—5,0 м (4H, CH₂=), ~5,1—5,9 м (2H, CH=). IIIa: 0,93 и 1,03 два д (СН₃С, $J \simeq 2$ Hz), 2,22 с [N(CH₃)₂], ~2,75 м (CH), 3,54 и 3,60 два с (ОСН₃), ~4,8 м (4H, CH₂=), 5,8 м (2H, CH=), VIa: 5,1—7,7 м (CH₂C=), 2,1—2,6 м (CH₂), 2,26 с [N(CH₃)₂], 3,50 с (ОСН₃), ~4,5—4,7 м (CH₂=C=), ~4,7—5,2 м (CH₂=), 5,5—5,2 м (CH=).

[•] Метанол отогнан не полностью.

^{**} На хроматограмме VIII и IX не разделяются.

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԱՄԻՆՆԵՐԻ ԵՎ ԱՄՈՆԻՈՒՄԱՅԻՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

CXL. ՏԵՂԱԿԱԼՎԱԾ ԿԱՐԲԱԼԿՕՔՍԻՄԵԹԻԼ ԽՈՒՄԲ ՊԱՐՈՒՆԱԿՈՂ ԱՄՈՆԻՈՒՄԱՅԻՆ ԱՂԵՐԻ ՎԱՐՔԸ ՍՏԻՎԵՆՍՅԱՆ ՎԵՐԱԽՄԲԱՎՈՐՄԱՆ ԵՎ 3-ՊՈԿՄԱՆ ՌԵԱԿՏԻԱՆԵՐՈՒՄ

U. S. PAQUESUS, J. J. SEPSAFSUS L U. P. PUPUSUS

Ցույց է տրվնլ, որ β,γ-չ⁄ագեցած խմբի հետ մեկտեղ β-պոկման ընդունակ 1-կարբալօքսի-3-բուտենիլ խումբ պարունակող ամոնիումային աղերը նատրիումի մենիլատի աղդեցությամբ եներային միջավայրում էհիմնականում եննարկվում են ստիվենսյան վերախմբավորման՝ առաջացնելով ճյուղավորված կառուցվածքով ամինոեներներ։ Լ աղի օրինակի վրա հաստատվել է, որ սպիրտային միջավայրում հիմնականում տեղի ունի պոկման ռեակցիա։

INVESTIGATIONS IN THE FIELD OF AMINES AND AMMONIUN COMPOUNDS

CXL. BEHAVIOUR OF AMMONIUM SALTS CONTAINING SUBSTITUTED CARBALKOXYMETHYL GROUPS IN THE STEVENS REARRANGEMENT AND \$-ELIMINATION REACTIONS

S. T. KOCHARIAN, V. V. GRIGORIAN and A. T. BABAYAN

It has been shown that ammonium salts, containing a β,γ -unsaturated group together with a 1-carbalkoxy-3-butenyl group capable of β -elimination, undergo mainly a Stevens rearrangement with the formation of branched aminoethers under the action of etherial sodium methoxide. It has been established that primarily an elimination reaction occurs in an alcoholic medium.

ЛИТЕРАТУРА

- 1. G. C. Jones, Ch. R. Hauser, J. Org. Chem., 27, 806 (1962).
- 2. Химия алкенов, под ред. С. Патай, ИЛ, Л., 1969, стр. 234.
- 3. A. Adlerova, Coli. Czech., 25, 226 (1869).