XXX, № 7, 1977

УДК 547.435+547.233:

СИНТЕЗ НЕКОТОРЫХ НЕНАСЫЩЕННЫХ ДИАМИНОВ И ДИАЛКИЛАМИНОАЛКИЛОВЫХ ЭФИРОВ

А. А. АХНАЗАРЯН, М. А. МАНУКЯН и М. Т. ДАНГЯН Ереванский государственный университет Поступило 23 VI 1976

Взаимодействием дихлорангидридов 2,7-дналкил-4-октен-1,8-дновых кислот с амипоспиртами или первичными аминами получены соответствующие аминоэфиры и диамиды.

Табл. 3. библ. ссылок 4.

Известно, что некоторые производные двухосновных карбоновых кислот обладают курареподобной или ганглиоблокирующей активностью [1—3]. В настоящей работе с целью изучения активности синтезированы производные непредельных аналогов пробковой кислоты.

2,7-Дналкил-4-октен-1,8-дновые жислоты [1] превращены в соответствующие дихлорангидриды, из которых взаимодействием с аминоспиртами или аминами получены аминоэфиры 2,7-диалкил-4,5-дизамещенных (или незамещенных) -4-октен-1,8-диовых кислот (II) или диамиды (III). Последние восстановлением алюмогидридом лития (АГЛ) превращены в диамины. Из II и III получены четвертичные аммониевые соли.

HOOCCHRCH₂CX=CYCH₂CHRCOOH --- R'OOCCHRCH₃CX=CYCH₂CHRCOOR'

I II \rightarrow $R_2'NOCCHRCH_2CH=CXCH_2CHRCONR_2'$ \rightarrow III

→ R₂NCH₂CHRCH₃CH= CXCH₃CHRCH₃NR₂

Испытания показали слабую гипотензивную активность у дийод-метилата $\mathit{бuc}[(\beta$ -диметиламино) этилового эфира]-2,7-дипропил-4,5,ди-хлор-4-октен-1,8-диовой кислоты и слабую антибактериальную активность в отношении грамположительных бактерий у дийодметилатов $\mathit{бuc}[.(\beta$ -диметиламино) этилового эфира]-2,7-диизобутил-4,5-дихлор-4-октен-1,8-диовой и $\mathit{бuc}[.(\beta$ -диметил- ν -диметиламино) пропилового эфира-2,7-дибутил-4-октен-1,8-диовой кислот].

Экспериментальная часть

Чистота воех полученных веществ проверялась ГЖХ и ТСХ. Строение некоторых соединений подтверждено данными ИК спектроскопни.

Таблица 1

Диалкиламиновлкиловые эфиры 2,7-диалкил-4,5-ди	мещенных (или незамещенных)-4-октен-1,8-дновых кислот
--	---

R	2		.,	BELXOA, 0/0	Т. кип., °С/мм	d ²⁰	n20	Н	айде	н о,	⁰ /o	Вычислено, %				Т. пл.
	R'	X	Y					С	Н	N	CI	С	Н	N	CI	латов, °С
C ₂ H ₈	(C ₂ H ₅) ₂ NCH ₂ CH ₂	Н	н	89	209-211/2	0,9499	1,4620	67,40	11,00	6,45	= 1	67,61	10,80	6,57	_	-
u30-C₄H,	(CH ₃) ₂ NCH ₃ CH ₂	Н	Н	82	211-213/2	0,9448	1,4620	67,70	10,70	6,40	_	67,61	10,79	6,57		
C5H11	(CH ₃) ₂ NCH ₃ CH ₂	Н	Н	88	218-220/2	0,9421	1,4630	68,45	11,25	6.20	_	68,72	11,01	6,16	-	102—104
C ₄ H,	(CH ₃) ₃ NCH ₃ C(CH ₃) ₂ CH ₃	Н	Н	94	217—219/1	0,9255	1,4625	70,15	11,10	5,35		70,59	11,37	5,49	_	152—154
C ₂ H ₅	(CH ₃) ₂ NCH ₂ CH ₃	CI	CI	92	203-204/1	1,0776	1,4770	54,90	7,95	6,25	16,40	54.67	8,20	6,38	16,17	153-155
C ₃ H ₇	(CH ₃) ₂ NCH ₂ CH ₂	CI	CI	86	225-227/2	1,0592	1,4750	56,20	8,90	5,80	15,60	56,53	8,56	6,00	15.20	140—142
C ₄ H ₉	(CH ₃) ₂ NCH ₂ C(CH ₃) ₂ CH ₃	CI	CI	88	233-235/3	1,0214	1,4800	62,00	9,49	4,73	12,00	62,17	9,67	4,83	12,25	154-156
изо-C ₄ H ₀	(CH ₃) ₂ NCH ₂ CH ₂	CI	CI	83	197-199/1	1,0532	1,4800	58,40	8,55	5,55	14,10	58,18	8,88	5,60	14,34	146 - 148
uso-C5H11	(C ₂ H ₅) ₂ NCH ₂ CH ₂	Н	CI	87	188-190/1	0,5942	1,4795	66,35	10,20	5,20	6,85	66,12	10,47	5,14	6.52	11-22

Диалкиламиноалкиловые эфиры 2,7-диалкил-4-октен-1,8-диовых кислот. К охлажденному до 0—5° раствору 0,01 моля дихлорангидрида 2,7-диалкил-4-октен-1,8-диовой кислоты в 20 мл абс. бензола при перемешивании прикапывалось 0,04 моля аминоспирта. Реакционная смесь кипятилась 2 часа. Образовавшийся осадок отфильтровывался. Фильтрат после отгонки растворителя подвергался фракционированию (табл. 1).

Диамиды 2,7-диалкил-4-октен-1,8-диовых кислот и их 4-метилзамещенных. Получены аналогично предыдущему из дихлорангидрида

кислоты I и диэтиламина (табл. 2).

Таблица 2
Диамиды 2,7-диалкил-4-октеп-1,8-диовых кислот и их 4-метилпроизводных

	x	Buxoa. °/0	Т. кип., "С/м.и	d ₄ ²⁰	n _D ²⁰	Hai	ідено, '	%	Вычислено, 0/0			
R						С	Н	N	С	Н	N	
C ₂ H ₅	н	85	203—205/2	0,9481	1,4801	71,25	11,08	7,90	71,00	11,24	8,28	
C ₃ H ₇	Н	86	210-212/2	0,9407	1,4818	72,00	11,67	7,72	72,13	11,47	7,65	
изо-С4Н.	Н	82	216-218/1	0,9340	1,4823	72,87	11,80	7,30	73,09	11,68	7,10	
C ₂ H ₇	CH3	88	208-210/1	0,9415	1,4829	72,50	11,40	7,25	72,63	11,58	7,37	
C ₄ H _e	CH ₃	80	218-220/1	0,9385	1,4840	73,28	11,90	6,80	73,53	11,76	6,86	
изо-С ₅ Н ₁₁	CH ₃	79	213-215/1	0,9343	1,4848	74,62	11,70	6,35	74,31	11,92	6,42	

1,8-бис (Диэтиламино)-2,7-диалкил-4-октены и их 4-метилэамещенные. Смесь 0,15 моля АГЛ в эфире, 20 мл абс. бензола и 0,05 моля днамида кислоты II кипятилась 4 часа на водяной бане. После охлаждения прибавлялось 15 мл воды и смесь перемешивалась еще в течение часа. Бензольный раствор декантировался с осадка, последний промывался абс. бензолом. Растворитель удалялся и остаток фракционировался в вакууме (табл. 3).

Таблица З 1,8-бис(Диэтиламино)-2,7-диалкил-4-октены и их 4-метилзамещенные

193	R	v	Buxoa, %	Т. кип., °С/мм	d ₄ ²⁰	n _D ²⁰	Най	дено,	°/o	Вычи	слено,	Т. пл.	
	*	^		°С/мм			С	Н	N	С	Н	N	пикра- тов, °С
	C ₂ H ₅ *	Н	93	152-154/2	0,8420	1,4650	77,27	13,70	9,10	77,42	13,54	9,03	-,-
	C ₃ H ₇	Н	91	160—162/1	0,8444	1,4661	78,40	13,45	8,27	78,10	13,61	8,28	157—158
	C ₄ H ₀	Н	92	169—171/2	0.8465	1,4670	78,88	13,47	7,56	78,68	16,66	7,65	-
	C ₃ H ₄	CH ₃	89	170—172/2	0,8452	1,4669	78,17	13,41	7,80	78,41	13,63	7,95	
изо-	C5H11	CH ₃	87	183—185/2	0,8497	1,4700	79,65	13,90	6,68	79,41	13,72	6,86	163—164
						0.31				13		- 1	

[•] Т. пл. йодметилата 162-163°.

որոշ ՉՀԱԳՆՑԱԾ ԴԻԱՄԻՆՆԵՐԻ ԵՎ ԴԻԱԼԿԻԼԱՄԻՆՈԱԼԿԻԼ ԶԺՅՈՍ ՊԴԺՆԻՍԵ

Ա. Հ. ՀԱԽՆԱԶԱՐՑԱՆ, Մ. Ա. ՄԱՆՈԻԿՑԱՆ և Մ. Տ. ԴԱՆՂՑԱՆ

2,7-Դիալկիլ-4,5-դիտեղակալված (կամ չտեղակալված)4-օկտեն-1,8-դիթթուների դիքլորանհիդրիդների և ամինոսպիրտների կամ առաջնային ամինների փոխազդեցությունից ստացվել են համապատասխան ամինոէսթերները և դիամիդները։ Վերջինների վերականգնումը հանդեցրել է դիամինների։

SYNTHESIS OF SOME UNSATURATED DIAMINES AND DIALKYLAMINOALKYL ESTERS

A. H. HAKHNAZARIAN, M. A. MANUKIAN and M. T. DANGHIAN

By reaction of dichlorangidrides of 2,7-dialkyl-4-octen-48-dioic acids with aminoalkohols or primary amines have been synthesised corresponding aminoesters and dialkylaminoalkylesters.

The corresponding aminoesters and dialkylaminoalkyl esters have been obtained by the interaction of 2,7-dialkyl-4,5-substituted or non substituted 4-octen-1,8-dicarboxylic acid chlorides with aminoalcohols or primary amines.

ЛИТЕРАТУРА

- 1. А. Л. Мнджоян, О. Л. Мнджоян, Н. А. Бабиян, ДАН Арм. ССР, 25, 125 (1967); А. Л. Мнджоян, О. Л. Мнджоян, Н. А. Бабиян, Изв. АН Арм. ССР, 12, 359 (1959); О. Л. Миджоян, Л. М. Тоскунина, Арм. хим. ж., 21, 312 (1968); Н. В. Климова, Л. Н. Лаврова, М. И. Шмирян, Д. Н. Ибадева, Хим. фарм. ж., 1976, 28.
- 2. R. B. Barlow, H. R. Jng. Brit. J. Pharmacol., 3, 298 (1948).
- 3. А. Л. Миджоян, Н. М. Оганджанян, Изв. АН Арм. ССР, 12, 291 (1959).
- 4. А. Ахназарян, Л. А. Хачатрян, К. С. Бадалян, М. Т. Дангян, ХГС, 1971, 1590; А. А. Ахназарян, Л. А. Хачатрян, М. А. Манукян, М. Т. Дангян, ЖОрХ, 11, 35 (1975); А. А. Ахназарян, Л. А. Хачатрян, М. А. Манукян, М. Т. Дангян, ЖОрХ, 6, 1774 (1970).