XXX, № 6, 1977

КРАТКИЕ СООБЩЕНИЯ

УДК 541.127

ГЕТЕРОГЕННАЯ РЕКОМБИНАЦИЯ РАДИКАЛОВ НО₂ НА ПОВЕРХНОСТИ, ОБРАБОТАННОЙ НF.

К. Г. ГАЗАРЯН в Т. А. ГАРИБЯН

Институт химической физики АН Армянской ССР, Ереван

Поступило 27 XII 1976

До настоящего времени константа гетерогенной гибели радикалов HO_2 на поверхности, обработанной HF, не была непосредственно определена. В работе [1] оделана оценка энергии активации гетерогенной гибели радикалов HO_2 , полученных при окислении формальдегида на разных поверхностях. В работе [2] при исследовании распада H_2O_2 косвенным путем были оценены вероятности захвата (ε) радикалов HO_2 различными поверхностями.

В настоящей работе при изучении стадии зарождения цепи в реакции окисления водорода с помощью жинетического метода вымораживания радикалов в сочетании с ЭПР [3] удалось непосредственно измерить константу гетеротенной гибели радикалов НО₂ на поверхности, обработанной НГ в интервале 698—793°С.

Иоследования проводились при низком давлении (P=0,1 тор, смесь $H_2:O_2:10CO_2$) и больших линейных окоростях, в кварцевом реакторе (d=0,8 см, l=8 см) по методике, описанной в [3].

На рисунке приведена кинетика накопления радикалов НО₂ при разных температурах. Исследования проводились в условиях сохранения линейной зависимости количества накопленых радикалов НО₂ от времени эксперимента. Как видно из рисунка, екорость накопления радикалов НО₂ при очень малых т_к растет линейно со временем контакта, затем наблюдается замедление скорости с выходом на стационарный режим. Такое поведение связано с тем, что при очень малых т_к скорость зарождения значительно больше скорости гибели радикалов НО₂. По мере увеличения времени контакта происходит выравнивание скоростей зарождения и гибели радикалов на стенке реакционного сосуда и скорость накопления радикалов НО₂ достигает постоянного значения.

Таким образом, скорость накопления радикалов HO₂ можно описать уравнением

$$\frac{d\left[\mathrm{HO_2}\right]}{dt} = W_0 - K_r\left[\mathrm{HO_2}\right] \tag{1}$$

где W_0 — скорость зарождения радикалов HO_2 , K_r — константа скорости их гегерогенной гибели.

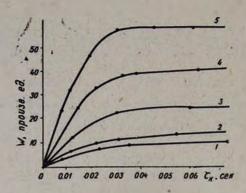


Рис. Кинетика накопления радикалов HO₂ при давлении 0,15 *тор*: 1—698; 2—717; 3—740; 4—750; 5—793°C.

При начальных условиях t=0, $[HO_2]=0$ после интегрирования уравнения (1) имеем

$$[HO_2]_{rex} = \frac{W_0}{K_r} (1 - e^{-K_r t})$$
 (2)

Так как в области стационарных концентраций $W_0 = W_{\text{гиб}}$, а $W_{\text{гиб}} = K_r \, [\text{HO}_2]_{\text{стан}}$

$$[HO_2]_{\text{rex}} = [HO_2]_{\text{crau}} (1 - e^{-K_{\Gamma}t})$$
 (3)

логарифмируя уравнение (3), имеем

$$\ln \{ [HO_2]_{crau} - [HO_2]_{rek} \} = \ln [HO_2]_{crau} - K_r t$$

Из зависимости $\ln |[HO_2]_{crau} - [HO_2]_{rek} |$ от t для каждой из исследуемых температур определялась K_{ru6} , а энергия активации гибели радикалов HO_2 на поверхности, обработанной HF, была вычислена из зависимости $\lg K$ от $\frac{1}{T}$. Она оказалась равной 11.9 ± 1 $\kappa \kappa a \Lambda / \kappa o \Lambda b$. Предэкспоненциальный множитель, вычисленный из экспериментальных данных, оказался равным $10^{4.4}$. Таким образом, в области темпе-

ратур 689—793°C константу гетерогенной гибели радикалов НО_в можно представить в виде

$$\mathcal{K}_{r} = 10^{4.4 \pm 0.15} \ \exp \left(-\frac{11900 \pm 1000}{RT}\right) \ ce\kappa^{-1};$$

Авторы выражают благодарность Ф. Г. Григоряну за участие в обсуждении полученных результатов.

ЛИТЕРАТУРА

- 1. И. А. Варданян, Г. А. Сачян, А. Б. Налбандян, ДАН СССР, 193, 123 (1970).
- 2. D. E. Hoare, G. B. Peacock, G. R. D. Ruxton, Trans. Far. Soc., 63, 2498 (1967).
- 3. А. Б. Налбандян, А. А. Манташян, Элементарные процессы в медленных газофазных реакциях, Ереван, 1975.