XXX, № 2, 1977

УДК 543.51+547+885.1

МАСС-СПЕКТРОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ИЗОМЕРОВ ПОЛОЖЕНИЯ В РЯДУ АЛКОКСИБЕНЗИЛЗАМЕЩЕННЫХ ДИОКСИПИРИМИДИНОВ

Р. Г. МИРЗОЯН, Р. Г. МЕЛИК-ОГАНДЖАНЯН и А. А. АРОЯН

Институт тонкой органической химии им. А. Л. Миджояана АН Армянской ССР, Ереван

Поступило 9 XII 1975

Показано, что масс-спектрометрический метод позволяет надежно индентифицировать изомеры положения в ряду алкоксибензилзамещенных диоксипиримидинов. Табл. 5, библ. ссылок 4.

В предыдущих работах были исследованы масс-спектры алкоксибензилзамещенных 2,4-, 4,5- и 4,6-диокоипиримидинов [1, 2]. Настоящая работа посвящена использованию масс-спектрометрии для определения изомеров положения в ряду алкоксибензиламещенных диоксипиримидинов.

Из ранее рассмотренных алкоксибензилдиоксипиримидинов в ряду метоксибензилпроизводных изомерами положения являются соединения I, III и V, а в ряду этоксильных аналогов—II, IV и VI. Однако, учитывая, что 6—СН₃-группа в случае производных урацила вносит лишь небольшой вклад в картину распада, для сравнения можно использовать и соединения VII и VIII.

Изомерия положения отражается прежде всего на величине стабильности молекулярного иона $W_{\rm M}$, представляющей собой процентное отношение интенсивности піжа молекулярного иона к сумме интенсивностей всех пиков в спектре. Как видно из табл. 1, эта величина возрастает при переходе от 2-(n-метоксибензил)-4,5-диоксипиримидина (III) к 2-(n-метоксибензил)-4,6-(I) и к 5-(n-метоксибензил)-4,6-диоксипиримидинам (V).

Таблица /
Стабильность молекулярных ионов метоксибензилзамещенных изомеров

Соединение	Ш	1	V
W _M	17	21	28

Заметное увеличение стабильности молекулярных ионов при переходе к изомеру V может быть связано с более высокой электронной плотностью в положении 5 пиримидинового ядра по сравнению с положением 2 [3]. В силу этого Спиримидия— Сбензил-связь в положении 5 гораздо прочнее, чем в других положениях. С последним обстоятельством, очевидно, связано также уменьшение суммарной интенсивности пиков фрагментов, обусловленных разрывом этой связи, при переходе от соединений I, III к соединению V (табл. 2).

Tаблица 2 Питенсивность пиков ионов, образующихся при разрыве $C_{\text{пиримидил}} - C_{\text{бензи.}}$ -связи в спектрах изомеров ($^{\circ}$ / $_{0}$ от суммарной)

121	111	91	Суммарная интенсивность		
11	5	4	20		
14	_	7	21		
6	_	2	8		
	121 11 14	m/e фрагмента 121 111 5 14 —	11 5 4 14 — 7		

Однако для отнесения к тому или иному изомеру вместо указанных количественных значений лучше использовать качественные различия, обусловленные специфическими направлениями распада.

В табл. 3 приведены характеристические фрагменты в спектрах изомеров, где плюсами отмечены ионы, образующиеся при распаде тех или иных изомеров, а минусами—не образующиеся.

Следует отметить, что пики харажтеристических ионов в масс-спектрах имеют большую интенсивность (более 30% от максимального пика), что делает их пригодными для использования как реперных при качественном и количественном масс-фрагменометрическом анализе.

В табл. 4 приведены массовые числа и структуры некоторых характеристических ионов, указанных в табл. 3.

Таблица 3

Характеристические	фрагменты	В	спектрах	изомеров
Vaharichuciusecuus	Abor months	_		

Изомеры								
Фрагменты	1	_ 11	111	IV	v	VI	VII	VIII
a	+	+	_	_	_	_	-	_
6	+	+	+	+	-		-	_
8	+	+	+	+	_	-	_	_
0	+	+	+	+	_	_	_	_
e	+	+	+	+	-	_	_	_
ж	_	_		_	+	+	+	+
ш	_	_	_	_	_	_	+	+
κ	_	-	_	-	+	+	_	-
А	_	-	_	_	+	+	_	_
м	_	+		_	+	+	-	_
н	_			_	+	+	_	117
o	_	_	_	-	-	-	+	+
p		- 1	- ;	_	_	_	+	+
с	-	- 1	1	_	-	_	+	+

Таблица 4
Строение и массовые числа некоторых характеристических фрагментов
изомеров I, III, V и VII

Соеди-	Массовые числа и строение фрагментов				
1, 111	OH OH NC—N≡C—OH OH OH OH OH OH OH OH on on on on on on on on on o				
	$ \stackrel{+}{O} - $				
v, vii	OH OH CH ₂ OH CH ₃ THC≡C - OCH ₃				
	ж, m/e 125, u, m/e 138 к, m/e 132 X=H, Y=OH m/e 139, X=OH, Y=CH ₃				

Продолжение таблицы 4

Соеди-	Массовые числа и строение фрагментов				
₹, VII	$HC = HC - \bigcirc OCH_3$ A, m/e 133 $O = C = C$	O=C=C=C	м, т/е 160		
	B	н, т/е 161	f. Intoon		
	[M—R—HNCO] ⁺ o, m/e 188	[ж-HNCO] р, m/e 96	[u-HNCO]* c m/e 95		

Строение ионов предположено на основании данных масс-опектров высокого разрешения* (табл. 5) и меченых аналогов.

Таблица 5 Гезультаты определения элементного состава некоторых характеристических понов в масс-спектрах изомеров ! и V

ė	Номинальное		m/e		
Соед	массы нонов значение	Молекулярная формула	вычислено	определено	
1	69 (8)	C,HN,O	69,0088	69,0095	
	69 (8')	C ₃ H ₃ NO	69,0214	69,0206	
	86 (6)	C ₃ H ₄ NO ₂	86,0242	86,0266	
	111 (a)	C ₄ H ₃ 11 ₂ O ₃	111,0194	111,0278	
	111 (a1)	C ₅ H ₅ NO ₃	111,0320	111,0278	
\mathbf{v}	125 (ж)	C ₂ H ₅ N ₂ O ₂	125,0351	125,0350	
	132 (ĸ)	C ₉ H ₈ O	132,0575	132,0573	
	133 (A)	C,H,O	133,0653	133,0648	
	(بد) 160	C ₁₈ H ₈ O ₃	160,0525	160,0616	
	160 (x1)	C ₉ H ₈ N ₂ O	160,0636	160,0616	
	161 (H)	C10H,O2	161,0602	161.0616	

Масс-спектры высокого разрешения сняты на приборе JMS-01-SG-2 (фирма «Jeol»). По данным табл. 5, пики с массами 69, 111 и 160 являются составными. В табл. 4 приведены только ионы составов в, а и м.

ԱԼԿՕՔՍԻԲԵՆԶԻԼԱՏԵՂԱԿԱԼՎԱԾ ԴԻՕՔՍԻՊԻՐԻՄԻԴԻՆՆԵՐԻ ՇԱՐՔՈՒՄ ԴԻՐՔԱՑԻՆ ԻԶՈՄԵՐՆԵՐԻ ՈՐՈՇՈՒՄԸ ՄԱՍՍ–ՍՊԵԿՏՐՈՄԵՏՐԻԿ ՄԵԹՈԴՈՎ

P. L. UPPANSUL, P. S. UBLEP-OLULRUSSUL L L. U. LUPNSUL

Ցույց է տրված, որ մասս-սպեկտրոմետրիկ մեթոդը կարելի է հաջողությամբ կիրառել ալկօքսիբենզիլտեղակալված դիօքսիպիրիմիդինների շարքում դիրքային իզոմերների հայտնաբերման ու հաստատման համար։

MASS SPECTROMETRIC DETERMINATION OF POSITION ISOMERS IN ALKOXYBENZYL SABSTITUTED DI-OXYPYRIMIDINES

R. H. MIRZOYAN, R. G. MELIK-OHANJANIAN and H. A. HAROYAN

Mass spectrometry has been shown to be a reliable method for the identification of position isomers in alkoxybenzyldi-oxypyrimidines.

ЛИТЕРАТУРА

- 1. Р. Г. Мирзоян, Р. Г. Мелик-Осанджанян, А. А. Ароян, Арм. хим. ж., 28, 195 (1975).
- 2. А. А. Ароян, М. А. Қалдрикян, С. А. Хуршудян, Р. Г. Мирзоян, Арм. хим. ж., 27, 963 (1974).
- 3. Гетероциклические соединения, под ред. Р. Эльдерфильда, И.Л., М. т. 6, 1960, стр. 207.