

XXX, № 11, 1977

УДК 546.28:541.1:542.91

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ В СИСТЕМАХ MgCl₂—Na₂O·SiO₂—H₂O И MgCl₂—Na₂O·nSiO₂—H₂O ПРИ 20°C

Э. А. САЯМЯН, Т. И. КАРАПЕТЯН, С. Г. БАГДАСАРЯН, Д. П. БАШУГЯН в Г. Т. МИРЗОЯН

Институт общей и неорганической химии АН Армянской ССР, Ереван Поступило 13 V 1977

Исследованы счетемы $MgCl_2$ — $Na_2O \cdot SiO_2$ — H_2O и $MgCl_2$ — $Na_2O \cdot nSiO_2$ — H_2O при 20° методами «остаточных концентраций», определены pH, удельные электропроводности растворов, кажущиеся объемы осадков и растворимости, а также условия образования гидросиликатов магния.

Показано, что в зависимости от исходного мольного отношения MgO/SiO_2 и кремнеземистого модуля щелочного раствора SiO_2/Na_2O возможно образование гидросиликатов различного состава— $MgO\cdot SiO_2 \cdot nH_2O$ и $MgO\cdot 3SiO_2 \cdot nH_2O$.

Проведены кристаллооптическое, термографическое, рентгенографическое и ИК спектроскопическое исследования выделенных гидросиликатов, подтвердивших их нидивидуальность.

Рис. 2, библ. ссылок 9.

Синтез гидросиликатов взаимодействием растворимых солей металлов с щелочными силикатами и их применение в качестве наполнителей описаны в [1, 2]. В работах [3—5] описаны опособы получения ряда гидросиликатов—меди, никеля, кобальта, кадмия, цинка и др. Однако выяснение влияния исходного модуля щелочного раствора на состав выделяющихся твердых фаз в этих работах не проводилось. Цель данного исследования—установить возможность и условия синтеза высокомодульных гидросиликатов магния из водных растворов.

Экспериментальная часть и обсуждение результатов

В качестве исходных продуктов для исследования указанных систем использовались MgCl₂·6H₂O марки «х.ч.» и раствор силиката натрия, приготовленный растворением кремневой кислоты в NaOM. Были приготовлены щелочно-силикатные растворы с различным кремнеземистым модулем SiO₂/Na₂O=1—3 для выяснения его влияния на состав твердых фаз.

Системы исследовались при постоянной концентрации щелочного раствора, к постоянному количеству которого прибавлялось увеличивающееся от опыта к опыту количество раствора MgCl₂, исходя из различных мольных отношений SiO₂/MgO=0,25—5.

После равномерного, рашіообъемного сливания и перемешівания исходных составляющих реакционные емкости-цилиндры ставятся в вертикальное положение до установления равновесия, что определялось усадкой осадка.

После установления равновесия осадок отделялся от фильтрата, промывался до удаления ионов СI, затем проводился химический анализ обеих фаз: SiO₂—осаждением соляной кислотой, MgO—комплексо-

метрически [6].

Состав осадков устанавливался по методу «остаточных концентраций» на основании анализа исходных растворов и фильтратов. Построены кривые зависимости удельной электропроводности, рН фильтратов, растворимости и кажущегося объема осадков от мольного отношения исходной смеси (n).

Результаты исследования систем при постоянной концентрации щелочного раствора показывают, что в зависимости от исходного мольного отношения SiO_2/MeO образуются гидросиликаты различного состава. Так, для системы $MgCl_2$ — $Na_2O\cdot SiO_2$ — H_2O до и после достижения отношения $SiO_2/MgO=1$ имеет место образование осадков переменного состава, при $SiO_2/MgO=1$ осадок отвечает составу $MgO\cdot SiO_2\cdot nH_2O$. Дальнейшее повышение исходного мольного отношения приводит к переходу избыточного SiO_2 в раствор. Изломы кривых подтверждают образование гидрометасиликата магния при n=1 (рис. 1).

В системе $MgCl_2$ — $Na_2O \cdot nSiO_2$ — H_2O до и после достижения. $SiO_2/MgO=3$ образуются осадки переменного состава, при $SiO_2/MgO=3$ осадок отвечает составу $MgO \cdot 3SiO_2 \cdot mH_2O$. Изломы кривых подтверждают образование гидротрисиликата магния при n=3 (рис. 2).

При сравнении результатов проведенных исследований замечено, что в случае, когда мы исходим из щелочного раствора с кремнеземистым модулем $SiO_2/Na_2O=1$, переменный состав осадков находится в пределах отношения $SiO_2/MgO=1-1,7$ даже при исходном отношении $SiO_2/MgO=4$.

При отношении SiO₂/Na₂O в исходном растворе = 2—3, переменный состав осадков находится в пределах 2,1—3. Образования метасиликата в данном случае не наблюдается. По-видимому, это объясняется отсутствием простейшего силикатного иона SiO₃ в исходном щелочно-силикатном растворе. Эти предположения согласуются с работами Гармана [7], который, определяя числа переноса при электролизе водных растворов силикатов натрия, установил в этих растворах наличие простых ионов Na, OH и SiO₃ в случае отношения SiO₂/Na₂O=1:1. В водных растворах силикатов натрия при отношениях Na₂O/SiO₂ = =1:2, 1:3 и 1:4 силикатный ион уже не является простым ионом SiO₃", а представляет собой комплеконый ион или же агрегацию простого иона с коллоидным кремнеземом.

Учитывая вышеизложенное, следует считать, что в щелочно-снликатном растворе с отношением $Na_2O:SiO_2=1:2$ и выше отсутствие простейшего иона SiO_3 " исключает возможность осаждения метасиликата магния из такого раствора и, наоборот, объясняет возможность получения осадков с отношением $SiO_2/MgO=2$ —3.

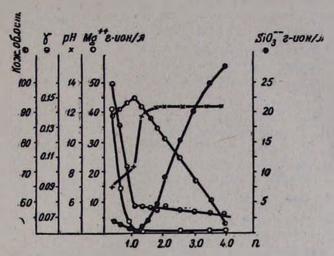


Рис. 1. Кривые зависимости рН, уд. электропроводности фильтратов, кажущегося объема осадков и растворимости от n в системе $MgCl_2$ — $Na_2O \cdot SlO_2$ — H_2O .

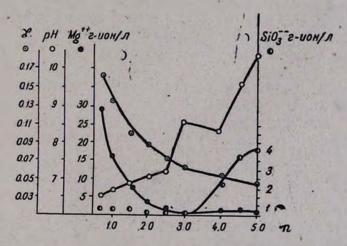


Рис. 2. Кривые зависимости рH, уд. электропроводности фильтратов и растворимости от n в системе $MgCl_2-Na_2O\cdot nSiO_2-H_2O$.

Таким образом, при получении гидросиликатов на основе щелочно-силикатных растворов в зависимости от кремнеземистого модуля SiO_2/Na_2O и исходного мольного отношения SiO_2/MeO выделяются гидросиликаты различного состава $MgO \cdot SiO_2 \cdot nH_2O$ или $MgO \cdot 3SiO_2 \cdot nH_2O$.

Выделенные гидросиликаты после тщательной промывки от С были исследованы кристаллооптически, термографически и рентенографически. Сняты ИК опектры высушенных при 120° гид росиликатов. Осадки рентгеноаморфны. Согласно кристаллооптическим данным, гидросиликаты магния представляют собой агрегатикруглой формы размером от 1 до 3,7 мк. Агрегаты бесформенные, размером 10—20 мк. Показатель преломления гидрометасиликата магния = 1,487, гидротрисиликата магния = 1,457. Была снята дериватограмма для гидрометасиликата магния.

На кривой ДТА гидрометаоил: ката мапния наблюдаются слабо выраженные эндотермические эффекты при 70, 320, 530 и 680°. Эффек ты при 70 и 320° соответствуют потере незначительного количества ад сорбционной воды с потерей массы 0,8% от массы исходного образца Эффекты при 530 и 680°, по-видимому, можно отнести к ступенчатому удалению адсорющионной воды, т. к. при этом на кривой ТС наблюдается потеря массы, составляющая основную часть всей потери.

Общая потеря массы при нагревании образца до 900° составляет 25,2% от массы исходного образца. При 800° на кривой ДТА наблюдается ярковыраженный экзотермический эффект, который не сопровождается потерей массы. Этот эффект следует прилисать началу кристаллизации силиката.

Термограмма осадка состава MgO-3SiO₂·mH₂O характеризуется наличием двух эндотермических эффектов при 100 и 280°, связанных со ступенчатым удалением адсорбционной воды.

Высокотемпературные эффекты у этого гидросиликата отсутствуют.

Сняты ИК спектры оинтезированных гидросиликатов, которые записывались на спектрометре ИКС-14А. Образцы готовились в виде взвеси в вазелиновом масле. Запись спектра производилась в диапазоне волновых чисел от 400 до 4000 εM^{-1} с помощью сменных призм NaCl, LiF, KBr.

В опектре гидрометасилнката магния наблюдаются полосы поглощения при 445, 462, 860, 890, 950, 1020, 1520, 1750 и 2810 см⁻¹.

Полосы потлощения в интервале $860-1020\ cm^{-1}$ характерны для валентного асимметрического колебания связи v_{os} (Si-O) в тетраедре (SiO₄). Полосы с максимумом при 1520, 1750 и 2810 cm^{-1} соответствуют деформационным δ (OH) и валентным ν (OH) колебаниям грушпы ОН воды. Полоса поглощения в области 445 и 462 cm^{-1} может быть приписана колебаниям связи Si-O-(Mg²⁺) и отчасти деформационным колебаниям грушп (SiO₄) [8].

В ИК спектре гидросиликата состава MgO · 3S₁O₂·mH₂O имеются полосы поглощения с максимумами при 445, 460, 475, 765, 1010, 1520 и 2840 см⁻¹.

Отличием данного опектра является наличие полосы поглощения в области $765\ cm^{-1}$.

Согласно литературным данным [9], колебание с максимумом при 765 см⁻¹ может быть отнесено к симметричному валентному колебанию групп Si—O—Si.

Полоса с максимумом при 1010 см^{-1} соответствует валентным асимметричным колебаниям Si—O в тетраэдре (SiO_4) Полосы поглощения при 445 и 460 см^{-1} относятся к колебаниям связи Si—O—(Me^2+).

Из приведенных ИК спектроскопических исследований можно заключить, что осадок состава MgO-SiO₂-¬H₂O представляет собой гидрометасиликат магния, а наличие связи Si—O—Si в осадке состава MgO·3SiO₂- mH₂O дает возможность подтвердить, что в данном случае мы имеем гидротрисиликат магния.

> MgCl₂—Na₂O·SiO₂—H₂O ԵՎ MgCl₂—Na₂O·nSiO₂—H₂O ՀԱՄԱԿԱՐԳԵՐԻ ՀԵՏԱԶՈՏՈՒԹՅՈՒՆԸ 20°–ՈՒՄ

ኒ. Ա. ՍԱՑԱՄՑԱՆ, Տ. Ի. ԿԱՐԱՊԵՏՑԱՆ, Ս. Գ. ԲԱՂԴԱՍԱՐՑԱՆ, χ . Պ. ԲԱՇՈՒՂՑԱՆ և Գ. Տ. ՄԻՐՋՈՑԱՆ

Ֆիզիկո-գիմիական անալիզի մեխոդներով ուսումնասիրվել է MgCl₂—Na₂O·SiO₃—H₂O և MgCl₂—Na₃O·nSiO₆—H₂O համակարդերը 20°-ում ։ Գարզվել է, որ կախված ելանլութերի MgO/SiO₂ և SiO₂/Na₂O մոլալին հարաբերություներից առաջանում են տարբեր բաղադրության հիդրոսիլի կատներ՝ MgO·SiO₂·nH₂O և MgO·3SiO₂·mH₃O: Կատարվել է ստացված հիդրոսիլիկատների բյունների և MgO·3SiO₂·mH₃O: հատարվել է ստացված հիդրոսիլիկատների բյունների բերմոգրաֆիկ ուսումնասիրությունների առաջանությունների ին ընստիպությունը հաստատված է ին ֆրակարմիր-սպեկտրոսկոպիկ եղանակով։

INVESTIGATION OF MgCl₂—N₂O·SiO—H₂O AND MgCl₂—N₂O·nSiO₂—H₂O SYSTEMS AT 20°C

E. A. SAYAMIAN, T. I. KARAPETIAN, S. G. BAGHDASSARIAN, J. P. BASHUGHIAN and G. T. MIRZOYAN

The title systems were investigated at 20°C by methods of physical and chemical analysis. It was established that hydrosilicates MgO·SiO₂·nH₂O and MgO·3SiO₂·mH₂O of different composition may be formed depending on the molar ratios of the initial compounds MgO/SiO₂ and those of SiO₂/Na₂O.

The individuality of the precipitated hydrosilicates was proved by crystallooptical, thermographical, X-ray, and infrared spectroscopic investigations.

ЛИТЕРАТУРА

1. Р. К. Айлер, Коллондная химия кремнезема и силикатов, М., Изд. Госстройнэдат, 1959, стр. 175.

Армянский химический журнал, ХХХ, 11-4

- 2. В. В. Свиридов, Г. А. Попкович, П. П. Адамович, ЖПХ, 45. 2738 (1972).
- 3. Н. В. Белов, В. С. Молчанов, Н. Е. Приходько, Тр. V совещания по экспериментальной и технической минералогии и петрографии, М., 1958, стр. 38.
- 4. В. В. Богданова, А. И. Лесникович, В. В. Свиридов. ЖНХ, 21, 461 (1976).
- 5. Г. Г. Бабаян, Э. Б. Оганесян, В. Д. Галстян, ЖНХ, 14, 1950 (1969).
- 6. Р. Пришбил, Комплексоны в химическом анализе, ИЛ, М., 1960, стр. 304.
- М. А. Матвеев, Растворимость стеклообразных силикатов натрия, Промстройиздат. М., 1957, стр. 19.
- 8. И. И. Плюснина, Инфракрасные спектры силикатов, Изд. МГУ, 1967, стр. 70, 111.
- А. Н. Лазарев, Колебательные спектры и строение силикатов, Изд. «Наука», Л., 1968, стр. 84.