#### XXX, № 11, 1977

УДК 541.8+546.16

### ИССЛЕДОВАНИЕ РАСТВОРИМОСТИ В СИСТЕМЕ Na<sub>2</sub>SiO<sub>3</sub>—NaF—H<sub>2</sub>O ПРИ 25 И 40°C

С. С. КАРАХАНЯН, С. А. САГАРУНЯН, С. В. ЗАКАРЯН и З. А. ГЕВОРКЯН Институт общей и неорганической химии АН Армянской ССР, Ереван Поступило 13 V 1977

Изучены растворимость и состав твердых фаз в системе Na<sub>2</sub>SiO<sub>3</sub>—NaF—H<sub>2</sub>O при 25 и 40°. Установлено, что в системе кристаллизуются твердые фазы Na<sub>2</sub>SiO<sub>3</sub>-9H<sub>2</sub>O и NaF.

Состав твердых фаз подтвержден термографическим и рентгенографическим исследованиями.

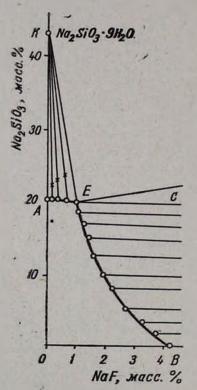
Рис. 2, табл. 1, библ. ссылок 5.

Быстрый рост производства фосфорных удобрений влечет за собой увеличение количества отходящих фтористых газов, очистка которых необходима как мера борьбы с загрязнением атмосферы.

Извлечение фтора из отходящих газов проводится в основном путем абсорбции. Анализ литературных данных показал, что для более глубокой очистки отходящих фтористых газов наиболее эффективными являются щелочные абсорбенты [1]. Разработан способ [2], в котором абсорбентом служит раствор метасиликата натрия. При этом в зависимости от ряда технологических факторов протекают следующие реакции:

$$Na_2SIO_3 + 2HF + H_2O = 2NaF + SIO_2 \cdot 2H_2O$$
 (1)

$$2NaF + SiO2 + 4HF = Na2SiF6 + 2H2O$$
 (2)


$$Na_{s}SIO_{s} + 6HF = Na_{s}SiF_{s} + 3H_{s}O$$
 (3)

Для выявления возможности образования промежуточных соединений (при первой стадии процесса) исследовалась система Na<sub>2</sub>SiO<sub>3</sub>— NaF—H<sub>2</sub>O при 25 и 40°, данные о которой в литературе отсутствуют.

### Экспериментальная часть

Изучение растворимости в системе Na<sub>2</sub>SiO<sub>3</sub>—NaF—H<sub>2</sub>O проводилось методом достижения равновесия в воздушном термостате в фторопластовых бомбах, закрепленных на опециально вращающейся установке [3]. Исходными веществами были девятиводный метасиликат натрия, синтезированный из гидроокиси натрия и аморфного кремнезема марки «х.ч.», и фтористый натрий марки «х.ч.».

Время установления равновесия, определенное путем систематического контроля состава жидкой фазы, составляло 12 дней. Проводился анализ насыщенных равновесных растворов и донных фаз. На основании полученных данных были построены изотермы растворимости системы Na<sub>2</sub>SiO<sub>3</sub>—NaF—H<sub>2</sub>O при 25 и 40°. Состав твердых фаз определялся методом «остатков» Шрейнемакерса. Как видно из рис. 1 и 2, диаграмма растворимости указанной системы представлена двумя полями кристаллизации. Поле кристаллизации девятиводного метасиликата натрия ограничено содержанием (масс. %): Na<sub>2</sub>SiO<sub>3</sub>, 20,01—19,523, NaF 0—0,993 при 25° и Na<sub>2</sub>SiO<sub>3</sub>, 29,12—28,70, NaF 0—1,139 при 40°. Поле кристаллизации фтористого натрия ограничено содержанием (масс. %): Na<sub>2</sub>SiO<sub>3</sub> 0—28,7 при 40°. Эвтоническая точка соответствует составу (масс. %): Na<sub>2</sub>SiO<sub>3</sub> 19,523, NaF 0,993 при 25° и Na<sub>2</sub>SiO<sub>3</sub> 28,7, NaF 1,139 при 40° в растворе.



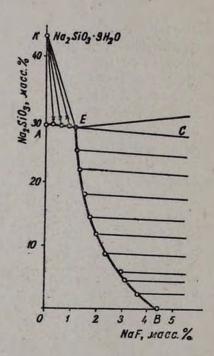



Рис. 1. Изотерма растворимости в системе Na<sub>2</sub>SiO<sub>3</sub>- NaF- H<sub>2</sub>O при 25°.

Рис. 2. Изотерма растворимости в системе Na<sub>2</sub>SiO<sub>3</sub>—NaF—H<sub>2</sub>O при 40°.

Для подтверждения состава твердой фазы проведены термографический и рентгенографический анализы. На термограмме образца в области кристаллизации NaF наблюдаются два эндотермических эффекта при 730 и 994°, что хорошо совпадает с термограммой фтористо-

го натрия. Эндотермический эффект при 730° объясняется полиморфным превращением NaF. Эффект при 994° [4] соответствует температуре плавления фтористого натрия. Термограмма образца в области кристаллизации девятиводного метасиликата натрия полностью идентична термограмме девятиводного метасиликата натрия.

Таблица: Данные по изменению удельного веса и удельной электропроводности насыщенных растворов системы Na<sub>2</sub>SiO<sub>3</sub>—NaF—H<sub>3</sub>O при 25 и 40°

| Na <sub>3</sub> SiO <sub>3</sub> ,<br>macc. º/ <sub>e</sub> | NaF,<br>macc. º/a | Уд. вес.,<br>г/см <sup>3</sup> | Уд. электро-<br>проводность,<br>ом <sup>-1</sup> ·см <sup>-1</sup> | Na <sub>2</sub> SiO <sub>3</sub> ,<br>Macc. <sup>0</sup> / <sub>0</sub> | NaF,<br>Macc. º/o | Уд. вес,<br>г/см <sup>3</sup> | Уд. электропроводность, ом <sup>-1</sup> · см <sup>-1</sup> |
|-------------------------------------------------------------|-------------------|--------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------|-------------------------------|-------------------------------------------------------------|
| при 25°                                                     |                   |                                |                                                                    | при 40°                                                                 |                   |                               |                                                             |
| 20,01                                                       | 0                 | 1,253                          | 0.0603                                                             | 29,12                                                                   | 0                 | 1,327                         | 0,0732                                                      |
| 19.95                                                       | 0.14              | 1,253                          | 0,0603                                                             | 28,92                                                                   | 0,25              | 1,327                         | 0,0732                                                      |
| 19,90                                                       | 0,31              | 1,253                          | 0,0603                                                             | 28,80                                                                   | 0,63              | 1,327                         | 0,0732                                                      |
| 19,66                                                       | 0,64              | 1,253                          | 0,0603                                                             | 28,75                                                                   | 0,89              | 1,327                         | 0,0732                                                      |
| 19,52                                                       | 0,99              | 1,253                          | 0,0603                                                             | 28,70                                                                   | 1,14              | 1,327                         | 0,0731                                                      |
| 18,19                                                       | 1,05              | 1,216                          | 0,0601                                                             | 25,00                                                                   | 1,16              | 1,285                         | 0,0730                                                      |
| 16,62                                                       | 1,25              | 1,182                          | 0,0600                                                             | 22,21                                                                   | 1,32              | 1,251                         | 0,0723                                                      |
| 14,60                                                       | 1,40              | 1,161                          | 0,0592                                                             | 18,02                                                                   | 1,56              | 1,211                         | 0,0703 ·                                                    |
| 12,22                                                       | 1,61              | 1,141                          | 0,0582                                                             | 14,40                                                                   | 1,68              | 1,181                         | 0.0672                                                      |
| 9,66                                                        | 1,91              | 1,122                          | 0,0561                                                             | 11,65                                                                   | 1,98              | 1,162                         | 0,0642                                                      |
| 7,95                                                        | 2,26              | 1,110                          | 0,0540                                                             | 8,46                                                                    | 2,29              | 1,123                         | 0,0602                                                      |
| 5,00                                                        | 2,72              | 1,083                          | 0,0490                                                             | 5,73                                                                    | 2,90              | 1,097                         | 0,0560                                                      |
| 3,31                                                        | 3,21              | 1,065                          | 0,0450                                                             | 4,58                                                                    | 3,09              | 1,085                         | 0,0526                                                      |
| 1,82                                                        | 3,74              | 1,052                          | 0,0400                                                             | 2,45                                                                    | 3,65              | 1,066                         | 0,0470                                                      |
| 0                                                           | 4,17              | 1,037                          | 0,0319                                                             | 0                                                                       | 4,35              | 1,035                         | 0,0369                                                      |

Рентгенографическое исследование твердых фаз соответствующих полей кристаллизации Na<sub>2</sub>SiO<sub>3</sub>·9H<sub>2</sub>O и NaF при 25 и 40° показало, что характерные линии межплоскостных расстояний образцов соответственно составляют 4,42; 3,31; 3,529; 2,298; 1,799 и 5,16; 4,24; 2,751; 2,312Å, что совпадает с межплоскостными расстояниями девятиводного метасиликата натрия и фтористого натрия [5].

Для характеристики жидкой фазы были определены удельные электропроводности и удельные веса фильтратов, результаты приводятся в таблице.

Как видим, величины удельной электропроводности и удельного веса фильтратов системы при 25 и 40° постоянно растут и приобретают максимальное значение в эвтонической точке, что указывает на отсутствие образования промежуточных и других комплексных соединений.

# $Na_2SiO_3-NaF-H_2O$ ՀԱՄԱԿԱՐԳՈՒՄ 25 ԵՎ $40^\circ$ -ՈՒՄ ԼՈՒՄԵԼԻՈՒԹՅԱՆ ՀԵՏԱԶՈՏՈՒՄԸ

Ս. Ս. ԿԱՐԱԽԱՆՅԱՆ, Ս. Ա. ՍԱՀԱՐՈՒՆՅԱՆ, Ս. Վ. ԶԱՔԱՐՅԱՆ և Զ. Ա. ԳԵՎՈՐԳՅԱՆ

Հետազոտված է 25 և 40°-ում Na<sub>2</sub>SiO<sub>3</sub>—NaF—H<sub>2</sub>O Տամակարգում լուծելիությունը։ Հաստատված է, որ նրանում կան Տետևյալ բյուրեղացման դաշտերը՝ Na<sub>2</sub>SiO<sub>3</sub>·9H<sub>2</sub>O և NaF։

Պինդ ֆազիրի բաղադրությունը հաստատված է Թերմոգրաֆիկ և ռենտ-

գենոգրաֆիկ Տետազոտություններով։

Ստացված դիագրամայի և լուծույթների էլեկտրոհաղորդականության ու տեսակարար կշռի չափումների հիման վրա թույց է տրված, որ ուսումնասիրվող համակարդում 25 և 40°-ում միջանկյալ միացություններ չեն առաջանում։

## SOLUBILITY INVESTIGATIONS IN THE SYSTEM Na<sub>2</sub>SiO<sub>3</sub>—NaF—H<sub>2</sub>O AT 25 AND 40°C

S. S. KARAKHANIAN, S. A. ZAHARUNIAN, S. V. ZAKHARIAN and Z. A. QUEVORKIAN

The solubility and composition of solid phases in the system Na<sub>2</sub>SiO<sub>3</sub>—NaF—H<sub>2</sub>O at 25 and 40°C have been investigated. It was established that there exist Na<sub>2</sub>SiO<sub>3</sub>·9H<sub>2</sub>O and NaF crystal fields.

The solid phase composition was determined by thermographical and X-ray investigations.

#### ЛИТЕРАТУРА

- 1. Н. М. Галкин, В. А. Зайцев, М. Б. Серегин, Улавливание и переработка фтористых газов, М., Атомивдат, 1975.
- 2. Авт. свид. СССР № 472900, кл. СОІ 3/02 В 01. Бюлл. изобр., № 21, 53/14, 1972.

3. С. С. Караханян, С. А. Сагарунян, Арм. хим. ж., 28, 21 (1975).

4. М. Г. Габриелова, М. А. Морозов, Производство неорганических ядохимикатов, Изд. «Химия», М., 1964, стр. 170.

 Handb. Cumulative Alpuabétical and Grouped Numerical Index of X-Ray Diffraction Data ASTM Including the Pifth Set of Cards, Philadelphia, 3Pa, 1953, p. 70, 162.