XXIX, № 9, 1976

УДК 541.64:547 (339+361)

СОПОЛИМЕРИЗАЦИЯ 5-(β-ЦИАН)ЭТИЛ-1,3-ДИАЛЛИЛИЗО-ЦИАНУРАТА С ВИНИЛАЦЕТАТОМ НА СИСТЕМЕ Мп(AcAc)₃— ХЛОРУКСУСНАЯ КИСЛОТА

М. Л. ЕРИЦЯН, Б. В. ЗОЛОТУХИН н Г. И. ЗОЛОТУХИНА

Государственный научно-исследовательский и проектный институт полимерных клеев им. Э. Л. Тер-Газаряна, Кировакан

Поступило 22 IX 1975

Изучена сополимеризация 5-(β -циан) этил-1,3-диаллилизоцианурата (ЦЭДАИЦ) с винилацетатом (ВА) в растворе дихлорэтана в присутствии инициирующей системы ацетилацетоната Mn^{3+} , и монохлорумсусной кислоты. Рассчитаны константы сополимеризации r_1 и r_2 . Построены диаграммы интегрального и дифференциального составов сополимера.

Рис. 4, табл. 2, библ. ссылок 7.

Ранее нами была изучена сополимеризация 5-(β -циан)этил-1,3-диаллилизоцианурата с винилацетатом в присутствии перекиси бензоила в растворе дихлорэтана. Были определены константы сополимеризации r_1 и r_2 для данной пары мономеров, равные $4,6\pm0,3$ и $0,06\pm0,01$, соответственно. Данная работа посвящена изучению сополимеризации 5-(β -циан)этил-1,3-диаллилизоцианурата с винилацетатом на инициирующей системе ацетилацетонат Mn^{8+} — монохлоруксусная кислота с определением констант сополимеризации и построением диаграмм интегрального и дифференциального составов полученного сополимера.

Экспериментальная часть

5-(β-Цивн)этил-1,3-диаллилизоцианурат (ЦЭДАИЦ) получали и очищали по [1], ацетилацетонат Мп⁸⁺ [(Мп(АсАс)₃] — по [2]. Винилацетат (ВА) очищали по [3], дихлорэтан (ДХЭ)—по [4]. Монохлоруксусную кислоту (МХУК) высушивали в вакуумном термошкафу при 35—40° и 10—15 мм. рт. ст.

Сополимеризацию проводили при 75±0,5° в присутствии инициирующей системы Мп (AcAc)₃—МХУК. По окончании реакции к раствору сополимера прибавляли этилацетат из расчета на 10 мл ДХЭ—5 мл этилацетата. Гомополимер ЦЭДАИЦ выпадает в осадок, сополимер ЦЭДАИЦ-ВА остается в растворе. После фильтрования сополимер осаждали из смеси ДХЭ-этилацетат диэтиловым эфиром, отфильтровывали, промывали диэтиловым эфиром и затем метиловым спиртом для удаления гомополимера ВА. Осадок сополимера сушили при 10—15 мм

рт. ст. и 40-45°. Структуру полученного сополимера определяли методом ИК спектроскопии на приборе UR-20. Для снятия спектров примеияли сухие пленки сополимеров, полученные на пластинках NaCl из ДХЭ. Диапазок измерений 700—1700 см-1.

Результаты и их обсуждение

Сополимеризацию проводили при различных соотношениях моно-<u>ЦЭДАИЦ</u> при малых глубинях превращения (до 7 + 10%)).

Константы сополимеризации r_1 и r_2 рассчитывали по уравнению Файнмена-Росса для диаллилпроизводных з-триазинов [5].

$$\frac{F}{f}(f-1) = \frac{r_1 F^2}{2f} - 2r_2$$

где $F = \frac{\text{ЦЭДАИЦ}}{\text{ВА}}$ — мольное отношение компонентов в мономерной

фазе, $f = \left(\frac{\text{ЦЭДАИЦ}}{\text{ВА}}\right)_{\text{пол}}$ — мольное отношение компонентов в полимерной фазе, r_1 и r_2 — константы сополимеризации.

f определяли методом ИК спектроскопии, используя градуировочные данные $\left(\frac{\text{ЦЭДАИЦ}}{\text{ВА}}\right)_{\text{пол}}$ от отношений оптических плотностей характерных полос поглощения данных мономеров. Мольные отношения мономерных звеньев в сополимерной цепи представлены в табл. 1.

Таблица 1 Зависимость (ЦЭДАИЦ) от мольных отношений компонентов кономерной смеси

Мольное отпошение компонентов в мономерной фазе, ЦЭДАИЦ ВА	Время реакции, мин	Вес полимера, г	Мольное отношение компонентов в полимерной фазе, (ЦЭДАИЦ) пол
0,125:1	40	0,109	0,56
0,18 :1	50	0,124	0,70
0,25 :1	60	0,140	1,06
J,37 :1	75	0,178	1,22
0,5 :1	100	0,247	1,66
0,7 :1	140	0,350	2,08

Исходя из зависимости $\frac{F}{f}(f-1)$ от $\frac{F^2}{2f}$ были оценены численные значения r_1 и r_2 , равные 4.4 ± 0.3 и 0.77 ± 0.01 , соответственно (рис. 1). Полученные значения в пределах экспериментальной ошибки соответствуют значениям r_1 и r_2 для данных мономеров при сополимеризации их в присутствии перекиси бензоила. Из значений r_1 и r_2 в присутствии как $Mn(AcAc)_3-MXYK$, так и перекиси бензоила видно, что инициирующая система не влияет на общую картину роста сополимерной цепи. Механизм образования активных центров полимеризации можно представить следующим образом [6]:

$$Mn(AcAc)_3 + nCICH_2C \stackrel{O}{\nearrow} OH \longrightarrow Mn^{2+} + CH_3C\dot{C}HCCH_3$$

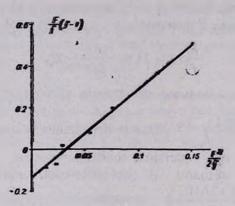


Рис. 1. Зависимость $\frac{F}{f}$ (f-1) от $\frac{F^2}{2f}$ где F и f равны мольному отношению $\frac{\text{ЦЭДАИЦ}}{\text{ВА}}$ в мономерной и полимерной фазах, соответственно.

В дальнейшем ацетилацетонатный радикал ведет процесс сополимеризации по свободнорадикальному механизму.

С целью проверки правильности определенных констант r_1 и r_2 были рассчитаны интегральный и дифференциальный составы сополимеров на основании уравнений, представленных в [7].

$$AB^{\frac{-m_1-m_2-1}{m_1}} = \gamma \tag{1}$$

$$M^{\frac{1}{m_1}}(A-K_1B)^{\frac{m_1}{m_1}}=:\gamma$$
 (2)

где γ — произвольный параметр, $M=\frac{Z_0^{m_1}}{B_0}\left(Z_0-K_1\right)^{m_0}, \quad K_1=\frac{\beta-1}{\alpha-1},$ $m_1=\frac{\beta}{1-\beta}, \quad m_2=\frac{1-\alpha\beta}{(1-\beta)\left(\alpha-1\right)}, \quad Z_0=\frac{A_0}{B_0}, \quad \alpha=\frac{r_1}{2}, \quad \beta=2r_2$ (для бифункциональных мономеров согласно [5]).

(1) представляет собой уравнение гиперболы, (2)—прямой. На основании различных значений у построен ряд прямых и гипербол, точки

пересечения которых дают искомую теоретическую кривую зависимости A = f(B). На рис. 2 приведена зависимость A = f(B) для системы ЦЭДАИЦ-ВА, из которой видно, что по мере сополимеризации сополимер обогащается компонентом А (ЦЭДАИЦ). Кривая пересекает ось абсцисс, что указывает на исчерпывание компонента А при значительном количестве компонента В (ВА) в системе. Полученная зависимость A = f(B) была использована для построения теоретических диаграмм составов (изменение интегрального и дифференциального составов с глубиной полимеризации). На рис. 3 приведены кривые изменения составов сополимера с увеличением степени превращения для системы ЦЭДАИЦ-ВА. По оси абсцисс отложены интегральный и дифференциальный $\frac{dA}{dA+dB}$ составы, выраженные в мольных долях компонента А, по оси ординат-суммы текущих концентраций A + B. Для получения экспериментального состава были получены сополимеры с мольным отношением компонентов в мономер-<u> ЦЭДАИЦ</u> = 0,5:1 при разной глубине сополимеризации (табл. 2).

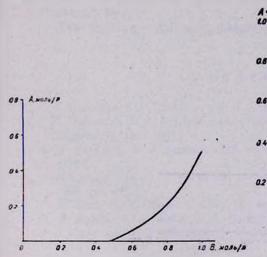


Рис. 2. Теоретическая зависимость A от B в ходе сополимеризации, где $A = = [\mbox{$\mathbb{L}$} \mbox{$\mathbb{H}$} \mbox{$\mathbb{L}$} \mb$

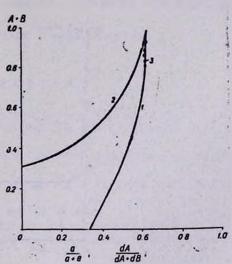


Рис. 3. Диаграммы составов сополимера ЦЭДАИЦ-ВА: [ЦЭДАИЦ]₀= =0,5, [ВА]₀=1,0 моль/л. 1— интегральный теоретический, 2— дифференциальный теоретический, 2—экспериментальные данные по интегральному составу.

Данные по отношению мономерных звеньев в сополимерной цепи были использованы для расчета экспериментального интегрального состава сополимера. Из рис. З видно, что теоретически рассчитанный

интегральный состав сополимера хорошо согласуется с экспериментальными данными. Это подтверждает правильность рассчитанных констант сополимеризации r_1 и r_2 .

			Таблица 2
Зависимость	ДЭДАИЦ \	OT	времени
	ВА /пол ополимеризации		- Publish

Время реакции, <i>мин</i>	Вес сополныера, г	ВА)пол		
100	0,247	1,66		
200	0,336	1,58		
300	0,400	1,54		
500	0,515	1.57		
720	0.550	1,57		

По данным ИК опектров, в сополимере присутствуют непрореагировавшие аллильные группы. Изменение количества аллильных групп от глубины превращения мономеров показано на рис. 4, из которого видно,

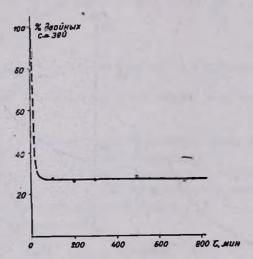


Рис. 4. Зависимость количества свободных аллильных групп в сополимере от времени сополимеризации. За $100^{\circ}/_{\circ}$ принято количество аллильных групп в чистом ЦЭДАИЦ. [ЦЭДАИЦ] $_{\circ}=0.5$, [ВА] $_{\circ}=1.0$, [МХУК] $_{\circ}=1\cdot10^{-2}$, [Мп(AcAc) $_{\circ}$] $_{\circ}=1\cdot10^{-2}$ моль/л, $T=75^{\circ}$.

что оставшееся количество аллильных групп в сополимере составляет 25—28% от общего количества аллильных групп в ЦЭДАИЦ и не зависит от глубины превращения мономеров. Отсюда можем предположить, что сополимер имеет разветвленную структуру. Хорошая же растворимость данного сополимера в хлорсодержащих углеводородах и кетонах говорит в пользу отсутствия трехмерной сетки.

$5-(\beta-8$ ԻԱՆԷԹԻԼ)-1,3-ԴԻԱԼԻԼԻԶՈՑԻԱՆՈՒՐԱՏԻ ԵՎ ՎԻՆԻԼԱՑԵՏԱՏԻ ՀԱՄԱՏԵՂ ՊՈԼԻՄԵՐԱՑՈՒՄԸ $Mn(AcAc)_3$ —ՄՈՆՈՔԼՈՐ- ՔԱՑԱԽԱԹԹՈՒ ՍԻՍՏԵՄԻ ՆԵՐԿԱՅՈՒԹՅԱՄԲ

Մ. Լ. ԵՐԻՑՏԱՆ, Վ. Վ. ԶՈԼՈՏՈՒԽԻՆ և Գ. Ի.ԶՈԼՈՑՈՒԽԻՆԱ

Ուսումնասիրված է 5-(β-ցիանէթիլ)-1,3-դիալիլիզոցիանուրատի և վինիլացնտատի համապոլիմերացումը դիքլորէթանի միջավայրում եռարժեք մանգանի ացետիլացետոնատի և մոնոքլորքացախաթթվի ներկայությամբ։ Հաշված են համապոլիմերացման հաստատունները։

COPOLYMERIZATION OF 5-(β-CYANOETHYL)-1,3-DIALLYL-ISOCYANURATE WITH VINYLACETATE IN THE SYSTEM Mn(AcAc),—CHLOROACETIC ACID

M. L. YERITSIAN, V. V. ZOLOTOUKHIN and G. I. ZOLOTOUKHINA

The copolymerization of 5-(β-cyanoethyi)-1,3-dialiyiisocyanurate with vinylacetate has been investigated in ethylene chloride medium in the presence of an initiating system of manganic acetylacetonate and monochloroacetic acid.

The copolymerization constants have been evaluated,

ЛИТЕРАТУРА

- !. Л. Г. Балицкая, К. К. Хоменкова, К. А. Корнев, ЖОХ, 37, 1421 (1966).
- 2. А. Н. Николаев, К. В. Белгородская, Н. И. Дувакина, Изв. вузов, Химия и хим. технология, 10, 1383 (1972).
- А. Н. Николаев, К. В. Белгородская, Н. И. Дувакина, Высокомол. соед., В11, 944, (1969).
- Общий практикум по органической химии, под ред. А. Н. Коста, Изд. «Мир», М., 1965, стр. 628.
- 5. P. W. Roth, R. F. Church, J. Polymer. Sci., 55, 41 (1961).
- 6. Ю. В. Коршак, Т. И. Бевза, Б. А. Долгоплоск, Высокомол соед., В11, 794 (1969).
- 7. В. С. Дюрбаум, А. Д. Абкин, В. С. Клименков, XIIM. Волокна, № 2, 10 (1962).