XXIX, № 9, 1976

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.491+547.47.052+547.551.41

ВЗАИМОДЕЙСТВИЕ ТИОНИЛАНИЛИНОВ С ЦИАНГИДРИНАМИ и α-АМИНОИЗОБУТИРОНИТРИЛОМ

В. В. ДОВЛАТЯН и Р.С. МИРЗОЯН

Армянский сельскохозяйственный институт, Ереван

Поступило 4 II 1976

Пожазано, что в присутствии каталитических количеств пиридина конденсацией тиониланилинов с циангидринами и скаминоизобутиронитрилом образуются гетерилиминопроизводные оксатиазолидина и тиадиазолидина, соответственно. Изучены пекоторые их превращения.

Табл. 5. библ. ссылок 7.

В литературе описано взаимодействие тиониланилина с карбонатом этилена, алканоксидами и эпихлоргидринами [1—4], приводящее к про-изводным 1,2,3-оксатиазолидина. Конденсация же тиониланилинов с циангидринами и α-аминоизобутиронитрилом не изучена. Известно, что конденсация арилтиониланилина с фенолами и опиртами протекает с образованием диэлкилсульфоксидов и ароматических аминов [5]. Вопреки этому, как показали наши исследования, реакция между тиониланилинами и циангидринами, а также α-аминоизобутиронитрилом в присутствии пиридина в абсолютном эфире и ацетоне при 0—60° приводит к иминооксатиазолидинам (табл. 1) и тиадиазолидинам (табл. 2), вероятно, по схеме

Одним из подтверждений приведенной схемы явилось выделение и гетеродиклизация промежуточных цианалкил-N-ариламиносульфинатов из ацетонциангидрина и тиониланилина.

Установлено, что цианизопропил-N-фениламиносульфинат под действием эфирного раствора хлористого водорода также подвергается гетероциклизации, образуя гидрохлорид имино-1,2,3-оксатиазолидина, который, как и его алициклический изомер, при перегонке разлагается, давая сернистый газ и нитрил N-фенилизомасляной кислоты.

Полученные гетерилимины через гидрохлориды оксатиазолидинов (I—X) (табл. 3) и тиадиазолидинов (XV—XVIII) (табл. 2) были превращены в соответствующие диоксопроизводные (I—X) (табл. 4) и (XIX—XXII) (табл. 2). Один из представителей этого ряда соединений — 2,4-диоксо-3-фенил-1,2,3-оксатиазолидин, получен также встречным синтезом — взаимодействием тиониланилина с этиловым эфиром гликолевой кислоты в присутствии пиридина.

$$C_{s}H_{s}NSO \xrightarrow{C_{s}H_{s}CO_{s}CH_{s}OH} \begin{bmatrix} O & CH_{2} \\ OS & CO \\ I & I \\ OS & CO \\ I & I \\ C_{e}H_{s} \end{bmatrix} \xrightarrow{-C_{s}H_{s}OH} OS CO CH_{2}$$

Конденсацией гетерилиминов с арилиэоцианатами в ацетоне в присутствии каталитических количеств пиридина или триэтиламина получены 2-оксо-3-л-хлорфенил-5-алкил (диалкил)-4-N-[арилкарбамоил]имино-1,2,3-оксатиазолидины I—V и N[арилкарбамоил]имино-1,2,5-тиадиазолидины (VI—IX) (табл. 5)).

$$\begin{array}{c|c}
X & -R_1R_2 \\
OS & N \\
R & R
\end{array}$$

$$\begin{array}{c|c}
-R_1R_2 \\
-R_1R_2 \\
-R_1R_2 \\
-R_1R_2
\end{array}$$

$$\begin{array}{c|c}
-R_1R_2 \\
-R_1R_2 \\
-R_1R_2
\end{array}$$

$$\begin{array}{c|c}
-R_1R_2 \\
-R_1R_2
\end{array}$$

При кислотном гидролизе соединение III (табл. 1) превращается в диоксооксатиазолидин (III) (табл. 4).

В отличие от этого под действием щелочи при 50—55° оксатиазолидины I и X подвергаются более глубокому гидролизу. Нами выделены и охарактеризованы лишь ароматические амины или их гидрохлориды.

Экспериментальная часть

ТСХ проведена на окиси алюминия II степени активности, ИК спектры сняты на приборе UR-20 (брикет с КВг в виде суспензий в вазелиновом масле), УФ спектры—в этиловом спирте на приборе Spekord, ЯМР спектр—на Вариан Т-60 (в растворе четыреххлористого углерода, в качестве внутреннего эталона использован тетраметилсилан).

2-Oксo-3-фенил-4-имино-5,5-диметил-1,2,3-оксатиазолидин (III). К 1,4 г (0,01 моля) тиониланилина в присутствии 1—2 капель пиридина при 0° прибавили 0,85 г (0,01 моля) ацетонциангидрина. Смесь оставили при комнатной температуре на 10 мин., затем нагрели при 50—55° 30 мин. и обработали 100 мл воды. Выход 1,3 г (58,0%), т. пл. 109—10°. Найдено %: N 12,38; S 14,16 · $C_{10}H_{12}N_2O_2S$. Вычислено %: N 12,50; S 14,30. ИК спектр, у, см-1: C=N 1609, SO 1098, аром. кольцо 1500.

Иминорксативзолидины I—X

Tabauua 1

Соедине-	R	Rı	R ₂	BEXON, %	Т. пл.,	Найде	но, °/,	Вычислено, .0/0	
					°C "	N	s	N	S
I	C ₆ H ₅	н	Н	57.45	52-53	14,53	16,12	14,28 13,35	16.33
11		Н	СН	56,72	64 – 65	13,14	15.41	12,50	15,25
111	11/12/	CH ₃	CH3	58.0	109—110	12,38	14,16	17,46	14,30
IV	n-O2NC.H4	Н	Н	59,0	123 124	17,64	13,50		13,25
V		Н	CH ₃	65,3	134-135	16,43	12,32	16,50	12,55
VI		CH ₃	CH3	71,5	113-114	15,30	12,21	15,60	11,90
VII	o-CIC.H.	Н	Н	43,4	62-63	12.31	14,00	12,15	13,85
VIII	n-CIC ₄ H ₄	Н	Н	68.3	58—59	12,30	13,54	12.15	13,85
ĪΧ		Н,	CH ₃	64,0	52-53	11,20	13,36	11,43	13,07
х	n-CIC ₆ H ₄	CH ₃	CH,	67,2	65-66	11,12	12,10	10,80	12,40

2-Оксо-3-фенил-4-имино-1,2,3-оксатиазолидин (I). К 1,4 г (0,01 моля) тиониланилина в присутствии 1—2 капель пиридина при 0° прибавили 0,57 г (0,01 моля) тликонитрила и при комнатной температуре оставили на 2 суток. Обработали 10 мл эфира и отфильтровали. Фильтр промыли 20 мл воды и получили 1,15 г (57,45%) І, т. пл. 52—53°. Найдено %: N 14,53; S 16,12. $C_8H_8N_2O_2S$. Вычислено %: N 14,28; S 16,33. ИК спектр, ν , c_M^{-1} : C=N 1605.

Аналогично получен VII (табл. 1).

2-Оксо-3-п-нитрофенил - 4-имино-5,5 - диметил - 1,2,3 - оксатиазолидин (VI). К смеси 1,84 г (0,01 моля) п-нитротиониланилина и 8 мл ацетона в присутствии 1—2 капель пиридина при 0° прикапали 0,85 г (0,01 моля) ацетонциангидрина и перемешивали при комнатной температуре 1 час. Ацетон удалили, остаток обработали водой, отфильтровали, после суш-

ки на воздухе промыли 10 мл бензола. Выход 1,9 г (71,5%), т. пл. 113— 114°.

Аналогично получены IV, V, VIII-X (табл. 1).

Аналогично при перемешивании в течение 3 час. получены XII, XIII (табл. 2). ИК спектр, v, $c m^{-1}$: C = N 1601—1610; NH 3380.

Производные тиадиазолидина XI—XXII

Таблица 2

Thousand the drawn with the training the training the training the training the training training the training											
Соедине-	R		1, %	Т. пл.,	Ha	айдено,	· / ₀	Вычислено, ⁰/₀			
	Ж	X	Выход,	°C	CI	N	s	CI	N	S	
XI	C ₆ H ₅	NH	62,7	70-71	_	18,67	14,63	_	18,85	14,35	
X11	n-C ₆ H ₆ NO ₂		63,4	117—118	-	20,61	12,10	_	20,90	11,93	
XIII	n-CIC ₆ H ₄		58,7	42-43	-	16,13	12,63	_	16,33	12,42	
XIV	o-CIC.H.		46,5	52-53	_	16,54	12,14	_	16,33	12,42	
ΧV	C ₆ H ₅	NH-HCI	94,5	90-91*	13,80	16,42	12,08	13,66	16,15	12,32	
IVX	n-O2NC4H4		96,7	75*	11,35	18,70	10,71	11,64	18,36	10,48	
- XVII	n-CIC ₄ H ₄		84,1	131 - 132*	24,46	14,62	10,71	24,12	14,30	10,90	
XVIII	o-CIC.H.		85,3	6465*	24,34	14,12	10,46	24,12	14,30	10,90	
XIX	C _s H _s	0	89,3	80	_	12,36	14,54	_	12,50	14,28	
XX	n-O,NC,H4	4	75,8	129—130	_	15,45	11,64	_	15,62	11,90	
XXI	n-CIC.H.		80,2	84-85	_	10,96	12,0	_	10,80	12,36	
XXII	o-CIC.H4	0	64,3	75—76) —	10,67	12,0	_	10,80	12,36	

[•] Плавится с разложением,

1-Оксо-2-фенил-3-имино-4,4-диметил-1,2,5-тиадиазолидин (XI). а) К смеси 1,39 г (0,01 моля) тиониланилина и 0,84 г (0,01 моля) α -амино-изобутиронитрола прибавили при охлаждении 1—2 капли пиридина. На следующий день к реакционной смеси прибавили 15 мл ацетона и нагревали при 50—60° 3 часа. Ацетон удалили и после обработки водой и бензолом получили 1,4 г (62,7%) XI, т. пл. 70—71°. Найдено %: N 18,67; S 14,63. $C_{10}H_{18}N_3OS$. Вычислено %: N 18,85; S 14,35. ИК спектр, ν , cm^{-1} : C=N 1601—1610, SO 1095, 1310, NH 3380, аром. кольцо 740, 1500, 1540. В ЯМР спектре: аром. кольцо дает сигнал в области 7,2 м. д. (мультиплет), экзоциклическая = NH (в виде уширенного горба) — 7,0 м. д.; эндоциклическая—NH 3,85 м. д. и 6 протонов групп CH_3 —1,75 м. д. В УФ спектре α_{max} , nm 244—250 и 286—290 [7].

Аналогично получен XIV (табл. 2). Так же стоянием при комнатной температуре в течение 6 суток с выходом 25—30% получен XI.

Цианизопропил-N-фениламиносульфинат. Получен аналогично III. После стояния при комнатной температуре в течение часа реакционную смесь перегнали в вакууме и получили 2,2 г (56,4%) цианизопропил-N-фениламиносульфината, т. кип. 73°/7—8 мм. Найдено %: N 12,15; S 14,06.

 $C_{10}H_{12}N_2O_2S$. Вычислено %: N 12,50; S 14,30. ИК спектр, v, см-1: NH 3390, SO 1104, $C \equiv N$ 2234 и аром. кольцо 700, 1504.

Нитрил-N-фенилизомасляной кислоты: а) 2,24 г (0,01 моля) цианизопропил-N-фениламиносульфината перегнали при атмосферном давлении, обработали эфиром. Выход 0,5 г (31,3%), т. пл. 91—92° [6].

б) 1,12 г (0,005 моля) III перегнали в вакууме 5—6 мм при 180° масляной бани. Полученные фракции обработали 5 мл петролейното эфира. Выход 0,3 г (37,6%), т. пл. 92° (этанол). ИК спектр, у, см⁻¹: С≡N 2245, NH 3385. Смещанная проба с образцом «а» не дала депрессии температуры плавления.

Гидрохлориды оксатиазолидинов 1-Х

Таблица 3

Соедине-			- 2	r. "/•	Т. пл.,	Найде	но, ⁰/о	Вычислено, %/,	
	R	R ₁	Ra	Выход.	°C.	N	S	N	S
1	C _e H ₅	н	н	88,7	165	12.13	13,60	12,04	13,76
II		Н	CH ₃	92,5	194 — 195	11.50	13,12	11,37	13,0
III		CH ₃	CH ₃	90,3	187—188*	10,46	12,54	10,74	12,30
IV	n-O2NC6H4	Н	Н	87.5	142	15,32	11,33	15,14	11,52
V	95.44	Н	CH ₃	81,7	161-162*	14,30	10.70	14,40	10,96
VI		CH ₃	CH ₃	97,0	94-95*	13,48	10,24	13,73	10,48
VII	o-CIC.H4	Н	Н	75,0	66-67*	10,71	12,35	10,50	12.0
VIII	n-CIC ₄ H ₄	Н	н	89,8	182—184*	10,23	12,30	10,50	12,0
IX		Н	CH ₃	85,6	165—166*	9,80	11,72	9,97	11,40
Х	n-CIC ₆ H ₄	CH3	CH,	78,4	140—141*	9,74	11,40	9,50	11,23

^{*} Плавится с разложением.

 Γ идрохлорид 2-оксо-3-фенил-4-имино-1,2,3-оксатиазолидина I (табл. 3). К 1,96 г (0,01 моля) 2-оксо-3-фенил-4-имино-1,2,3-оксатиазолидина в 20 мл ацетона при охлаждении льдом добавили эфирный раствор хлористого водорода и отфильтровали выпавшие кристаллы. Выход 2,1 г (88,7%).

Гидрохлориды II—X (табл. 3) и XV—XVIII (табл. 2) получены аналогично.

Аналогично из 1,1 г (0,005 моля) цианизопропил-N-фениламиносульфината получено 1,1 г (85%) гидрохлорида III. Смешанная проба с образцом III (табл. 3) не дала депрессии температуры плавления.

2,4-Диоксо-3-фенил-1,2,3-оксатиазолидин (I) (табл. 4). а) 1,16 г (0,005 моля) гидрохлорида I (табл. 3) растворили в 10 мл воды и оставили на ночь. Отфильтровали выпавшие кристаллы и получили 0,52 г (52,6%) I, т. пл. 78—79°.

Аналогично получены II—X (табл. 4) и XIX—XXII (табл. 2). ИК спектр, у, см⁻¹: CO 1674, SO 1090, аром. кольцо 750, 1600.

б) К смеси 0,7 г (0,005 моля) тиониланилина и 6 мл сухого бензола при охлаждении ледяной водой прибавили 0,5 г (0,005 моля) этилового эфира гликолевой кислоты и в присутствии следов пиридина нагревали при 60—65° водяной бани 3 часа. После удаления бензола и обработки водой получили 0,2 г (16,7%) І. Смешанная проба с предыдущим образцом не дала депрессии температуры плавления.

Таблица 4

Соедине-	R	Rı	R _a	Выход. "/0	Т. пл.,	Найде	но, •/о	Вычислено, ⁰/	
					°C	N	s	N	s
1	C ₆ H ₅	Н	н	52,6	78—79	7,36	16,50	7,12	16,20
- 11		Н	CH ₃	70,2	84 —85	6,37	15,32	6,64	15,15
111		CH ₃	СН,	63,0	75*	6,41	14,01	6,22	14,24
IV	n-O2NC.H4	H	Н	85,6	81—82	11,82	13,36	11,57	13,20
V		Н	CH ₃	78,6	178*	10,70	12,27	10,95	12,50
VI		CH ₃	CH ₃	92,7	105—106	10,63	11,64	10,37	11,86
VII	o-CIC.H.	Н	Н	52,0	92-93*	6,23	14,15	6,04	13,80
VIII	n-CIC.H4	Н	Н	53,2	80—81	6,17	13,51	6,04	13,80
IX		Н	CH ₃	83,5	62	6,01	13,28	5,70	13,04
х	n-CIC.H.	CH ₃	CH ₃	75,0	95—96	5,62	12,61	5,38	12,30

^{*} Плавится с разложением.

Таблица 5 N-[Арилкарбамоил]имипооксатиазолидины I—V п тиадиазолидины VI—IX

He-	9			Ar	а, °/о	Т. нл.,	Найдено,		Вычислено,	
Соедине-	R	R ₁	R ₂	Ar	Выход,	°C	N	S	N	s
1	n-CIC ₆ H ₄	н	н	C _s H ₅	97,4	215-216	12,26	9,0	12,04	9,16
II		CH ₃	Н	4.	94.2	224-225	11,72	8,56	11,55	8,82
111		CH ₃	Н	n-C.H.OCH.	95,6	234-235	10,34	8,40	10,66	8,14
IV		CH ₃	CH ₃	C _e H ₅	93,4	234-235	11,30	8,23	11,10	8,47
٧		CH₃	CH ₃	n-C.H.OCH3	92.4	240-241	10,51	8,10	10,30	7,84
VI	C ₆ H ₅	CH ₃	CH ₃	C _s H _s	95,6	180—181	_	9,62	16,38	9,37
VII				n-C.H4OCH3	94,0	221—222	15,20	_	15,0	8,60
VIII	n-CIC ₆ H ₄	100		11	93.5	227—228	14,0	7,90	13,75	7,85
IX	n-CIC ₆ H ₄	CH ₃	CH ₃	C ₆ H ₅	92,0	208 — 209	15,10	8,20	14,85	8,50

2,4-Диоксо-3-фенил-5,5-диметил-1,2,3-оксатиазолидин (III) (табл. 4). К 0,22 г (0,001 моля) иминооксатиазолидина III (табл. I) при охлаждении ледяной водой прикапали 1 мл конц. соляной кислоты в 6 мл воды и оставили на ночь. Затем нейтрализовали карбонатом натрия и отфильт-

ровали 0,1 г (44,5%) III (табл. 4).

 $2\text{-}O\kappa co\text{-}3\text{-}n\text{-}x$ лорфенил-4-N- [фенилкарбамоил] имино- $1,2,3\text{-}o\kappa catua3o$ лидин (I) (табл. 5). К смеси 2,3 г (0,01 моля) VII (табл. 1) и 10 мл ацетона в присутствии 1--2 капель пиридина (триэтиламин) прикапали 1,2 г (0,01 моля) фенилизоцианата и оставили на ночь при комнатной температуре. Выпавшие кристаллы обработали водой и отфильтровали. Получили 3,4 г (97,4%) I, т. пл. $215\text{--}16^\circ$. Найдено %: N 12,26; S 9,0. $C_{15}H_{12}CIN_8O_3S$. Вычислено %: N 12,04; S 9,16.

Аналогично получены II—IX (табл. 5). ИК спектр, ν , c_M^{-1} : аром.

кольцо 788, 1456, 1497, 1552, NH 3231—3280 и СО (амид) 1639.

թերնելԱնելԻննեՐԻ, ՑԻԱՆՀԻԴՐԻննեՐԻ եվ «–ԱՄԻՆՈՒԶՈԲՈՒՏԻՐՈՆԻՏՐԻԼԻ ՓՈԽԱԶԴՄԱՆ ՌԵԱԿՑԻԱՆ

4. 4. Andlupsul i A. U. Upransul

Թիոնիլանիլինների և ցիանհիդրինների փոխազդմամբ ստացված են 4-իմինո-1,2,3-օքսաԹիազոլիդինի ածանցյալներ։ Թիոնիլանիլինների և α-ա- մինոիզոբուտիրոնիտրիլի փոխազդմամբ սինթեղված են 3-իմինո-1,2,5-Թիա- դիազոլիդինի ածանցյալներ։ Իրականացված են նրանց մի շարք փոխարկում- ները։

INTERACTION OF THIONYLANILINES WITH CYANOHYDRINS AND α-AMINOISOBUTYRONITRILE

V. V. DOVLATIAN and R. S. MIRZOYAN

4-Imino-1,2,3-oxathiazolidines and their derivatives have been obtained by the interaction of thionylanilines with cyanohydrins. The corresponding 3-imino-1,2,5-thiadiazolidines have been synthesized by treating thionylanilines with α -aminoisobutyronitrile. A few transformations of the synthesised compounds have been carried out too.

ЛИТЕРАТУРА

- 1. Tsuge Otohiko, Mamaka Shuntaro, Masashi Tashiro, Fuminori Mashiba, Bull. Chem. Soc. Jap., 40, 2709 (1967).
- S. Ettls, A. P. Sineokov, M. E. Sergeeva, Khim. Geterotsiki Soedin., 5, 682 (1966);
 A., 66, 55150 (1967).
- 3. Yamada Fukiko, Nishiyama Tomihiro, Kinugasa Motokazu, Nakamani Masayoshi Buli. Chem. Soc. Jap., 43, 3611 (1970).
- 4. Nishiyama Tomihiro, Yamada Fukiko, Bull. Chem. Soc. Jap., 44, 3073 (1971).
- C. Corpanelli, G. Leandri, Ann. Chim. (Rome), 50, 147 (1960); [C. A., 55, 2541 (1961)].
- 6. Словарь орг. соед. М., 1, 1949, стр. 158.
- 7. A. W. Richardson, Can. J. Chem., 51, 680 (1973); [C. A., 78, 135199 (1973)].