XXIX. № 6, 1976

УДК 542.952.53:66.062.855.52

АЛКИЛИРОВАНИЕ N,N-ДИАЛКИЛАЦЕТАМИДОВ СТИРОЛОМ

Г. Г. СУКИАСЯН, А. Ц. МАЛХАСЯН II Г. Т. МАРТИРОСЯН

Всесоюзный научно-исследовательский и проектный институт полимерных продуктов, Ереван

Поступило 1 XII 1975

В продолжение псследований по алкилированию N,N-диэтилацетамида (V) и N-метилпирролидона (VI) олефинами [1—3] и с целью выяснения влияния заместителей у атома азота на легкость алкилирования нами изучено С-алкилирование N,N-диалкилацетамидов (I—IV) стиролом в присутствии каталитических количеств натрия. Показано, что во всех случаях имеют место моно- и диалкилирование с образованием диалкиламидов у-фенилмасляной и α-(β-фенилэтил)-у-фенилмасляной кислот.

 $CH_3CONR_3 + PhCH = CH_2$ $\xrightarrow{N_3}$ $PhCH_2CH_2CH_2CONR_3 + (PhCH_2CH_2)_3CHCONR_3$ 1. $R_3 = (CH_3)_3$, II. $(C_4H_9)_3$, III. $(CH_2)_5$, IV. $O(CH_3CH_2)_2$.

В случае I имеет место образование также и продукта триалкилирования (PhCH₂CH₂)₃CC (табл. 1). Методом конкурируюN(CH₃)₂

щих реакций показано, что реакционноопособность амидов кислот приылизительно одинакова.

$$CH_{3} = O > CH_{3}CON(C_{2}H_{3})_{2} > CH_{3}CON > CH_{3}CON(C_{4}H_{9})_{3} \approx 0$$

$$\approx CH_{3}CON O > CH_{3}CON(CH_{3})_{3}$$

$$1,1$$

$$1,1$$

$$1,0$$

По сравнению с I—V большую активность проявляет VI, что, по всей вероятности, можно объяснить меньшей делокализацией промежумочного карбаниона, вызванной циклической структурой молекулы.

Экспериментальная часть

Илимирование N,N-диалкилацетамидов стиролом. Смесь 0,05—0.15 моля N,N-диалкилацетамида, 0,05—0,15 моля стирола, 0,2 г натрия, 20 мл бензола и 0,05 г неозона «Д» перемешивали при 78° 3—7 час. После отгонки растворителя перегонкой выделены продукты реакции. Данные приведены в табл. 1 и 2.

*Таблица I*Алкилирование N-метилпирролидона и N,N-диалкилацетазмидов стиролом в бензоле

Исходный амид	Амид : сти- рол, .иоли	Продолжит. реакции, час	Выход продуктов реакции, °/,			
			моноалки- лированный	диалкили- рованный	триалкили- рованный	
VI	1:1*	3 6	33 9	34 40	=	
V	1:1* 1:3*	3,5 2,5	39 ~7	36 20	18 47	
ī	1:1 1:1** 1:3**	7 3 7	6 2 · 5	11 15 8	16 16 27	
11	3:1 1:1 1:3	3 3 3	32 21 22	37 55	=	
Ш	3:1 1:1 1:3	7 7 7	14 17 5	71 25 64	=	
IV	1:1 1:3	7 7	3 15	14 24	=	

^{*} Данные работы [1]. ** Без растворителя.

Определение сравнительной реакционноспособности I—VI. Смесь 8.7 ε (0,1 моля) 1, 9,9—17,1 ε (0,1 моля) одного из II—VI, 1,04 ε (0,01 моля) стирола, 0,1 ε натрия, 40 мл бензола и 0,05 ε неозона «Д» перемешивали при 78° до полной конверсии стирола. Ход реакции контролировали ГЖХ по расходу исходных амидов. ГЖХ проводили на хроматографе ЈІХМ-8МД (газ-носитель—гелий, скорость 40—50 мл/мин, неподвижная фаза ПДЭГС 10% на хроматоне H, размер колонки 2000 \times 3 мм, температура 180—280°).

Таблица 2

	Т. кнп., *С/мм	d ²⁰	n ²⁰	N. %	
Соединение				вычис-	нийдено
O CCH ₃ CH ₂ CH ₂ Pli	136 – 138,3	0,9748	1.5170	7,33	7,71
(CH ₃) ₃ N CCH(CH ₂ CH ₃ Ph) ₃	180-182,2	1,0170	1,5392	4,74	5,18
(CH ₃) ₃ N CC(CH ₂ CH ₂ Ph) ₃	235 - 236/3	_	-	3,51	4,03
CCH ₂ CH ₂ CH ₂ Ph	160-163/2	0.9478	1,5038	5,09	5,12
OCCH(CH,CH,Ph),	212—214 2	0,9820	1.5270	3,69	3.71
N. CCH,CH,CH,Ph	158—160/2	0,9774	1,4980	6,06	6,12
CCH(CH,CH,Ph),	208-210/2	1,0123	1,5330	4,18	4,21
CCH,CH,CH,Ph	160—162/2	1,1170	1,5480	6,00	6,12
O CCH(CH ₃ CH ₃ Ph) ₃	210-212/2	_	-	4.16	3,78

ЛИТЕРАТУРА

- 1. Э. А. Григорян, Г. Г. Сукиасян, Г. Т. Мартиросян, Арм. хим. ж., 27, 872 (1974).
- 2. А. Ц. Малхасян, Г. Г. Сукиасян, Л. А. Меграбян, Г. Т. Мартиросяя, Арм хим. ж., 28, 815 (1975).
- 3. Г. Г. Сукиасян, А. Ц. Милхасян, Э. А. Григорян, Г. Т. Мартиросян, Арм. хим. ж., 28, 917 (1975)