XXIX, № 3, 1976

КРАТКИЕ СООБЩЕНИЯ

УДК 542.592 53+547.253.3+547.281+547.288 2

АЛКИЛИРОВАНИЕ N-АЛКИЛАЛЬД- И КЕТИМИНОВ БУТАДИЕНОМ

К. Дж СААКЯН, А. Ц. КАЗАРЯН н Г. Т. МАРТИРОСЯН

Всесоюзный научно-исследовательский и проектный институт полимерных продуктов, Ереван

Поступило 28 VII 1975

Нами было показано, что альд- и кетимины легко алкилируются стиролом, изопреном и α - метилстиролом [1—4].

• Настоящее сообщение посвящено алкилированию альд- и кетиминов бутадиеном. Показано, что и в этом случае имеет место α-С-алкилирование с образованием ожидаемых иминов, кислотный гидролиз которых приводит к алкилированным альдегидам и кетонам (табл. 1,2).

$$C_{6}H_{11}N = CHCH_{2}R + CH_{2} = CHCH = CH_{2} \xrightarrow{N_{2}}$$

$$C_{6}H_{11}N = CHCHR \xrightarrow{H^{+}} HCCHR$$

$$C_{4}H_{7} \xrightarrow{C_{4}H_{7}}$$

$$C_{6}H_{11}N = CHCR \xrightarrow{H^{+}} HCCR$$

$$(C_{4}H_{7})_{3} \xrightarrow{(C_{4}H_{7})_{3}}$$

Согласно хроматографическим данным, при алкилировании изобутилиденциклогексиламина получается индивидуальный продукт. При помощи ИК спектроскопии доказано, что он является продуктом 1,4-присоединения. В случае бутилиденциклогексиламина и 1-метилпропилиденциклогексиламина моноалкилированные имины и соответствующ е им карбонильные соединения содержат в небольших количествах (2—7%) продукты 1,2-присоединения. В соответствии с этим продукты диалкилирования являются смесью трех изомеров, получающихся в соотношениях 19:4,5:1 для пропилиденциклогексиламина, 12,5:3:1 для бутилиденциклогексиламина, 15,6:3:1 для 1-метилпропилиденциклогексиламина, а карбонильные соединения соответственно в соотношениях 17:2:1, 16:2,5:1, 18:4:1.

$$R^*$$
 Алкилированные бутадиеном имины $C_6H_{11}N = C - C_1 - C_4H_7$ R^*

Соотно- шение имин/бу- тадиен	R	R'	R"	Выхол, %	Т. кип., °С; мм	d ²⁰	n ²⁰	Найдено, °/ ₀			Вычислено, */,		
								С	11	N	С	H·	N
1:2*	н	СНа	C ₄ H ₂	76	117—118/1	0,8879	1,4812	82,5	12,10	6,04	82,60	11,74	5,66
1:1	Н	CH ₃	CH ₃	85	104-106/5	0,8723	1,4671	80.75	12.20	7,33	81,10	12,07	6,76
	Н	Н	C ₂ H ₅	55	126/21	0,8513	1,4600	80,80	11,54	7,54	81,10	12,02	6,76
1:1**	Н	C ₂ H ₅	C4H7	33	131—132/3	0,9082	1,4863	82,20	12,40	5,94	82,76	11,80	5,36
	CH ₃	Н	CH ₃	34	98/1	0,8820	1,4749	81.42	12,30	6,34	81,16	12,08	6,76
1:2	C₅H _e	Н	CH ₃	53	141/1,5	0,8872	1,4846	82,48	12,28	5,62	81,76	11,78	5,46

^{*} При соотношении 1:1 получается продукт с выходом $56^{\circ}/_{\circ}$. ** При соотношении 1:2 получается только дипродукт с выходом $75^{\circ}/_{\circ}$.

Таблица 2

Алкилированные бутадисном альдегиды и кет ны $O = C - C_0 + C_0 + C_0$

R	R'	R"	Buxoa, "/.	Т. кип., °С/мм	d ₁ ²⁰	n ²⁰	Найдено. %		Вычислено, º/0		лд.	N, º/a	
							С	Н	С	Н	Т. пл. 2,4-ДР	наплено	вычис- лено
11	CH ₃	C ₄ H ₇	67	91/11	0,8817	1,4506	78,82	10,62	79,51	10,84	111	16,20	16,19
н	CH _a	CHa	76	41-42/11	0,8723	1.4431	76,44	11,30	76,19	11,11	124	18,1	18,20
Н	Н	C ₂ H ₅	67	61/21	0,8786	1,4516	75,40	11,00	76.19	11,11	133	18,22	18,30
H	C ₂ H ₅	C.H.	73	113-114/26	0,9368	1,4681	79,63	14,05	80,00	13,88	154	15,37	15,50
CH ₃	Н	CIIa	63	86/70	0,8418	1,4334	75,80	11,23	76,10	11.11	_	_	
C ₅ II,	11	CH ₃	70	128/33	0,8669	1.4549	80,20	11,38	80,00	11,11	-	-	_

Надо полагать [5], что основным является продукт 1,4—1,4-присоединения.

Экспериментальная часть

Алкилирование N-циклогексил-альд- и кетиминов бутадиеном. Через смесь 0,1 моля N-альд- или кетимина, 30 мл. бензола и 0,1 г натрил при перемешивании и нагревании до 80° в течение 3—4 час. пропускают 0,1—0,2 моля сухого бутадиена. Ход реакции контролируется при помощи ГЖХ на хроматографе ЛХМ-8МД (газ-носитель—телий, скорость 32—33 мл/мин, твердая фаза—хроматон-Н, неподвижная фаза—10 % ПДЭГС, длина колонки 1000×3 мм, температура 150—250°).

После отгонки бензола перегонкой получают продукты реакцич (табл. 1.).-

Гидролиз алкилированных иминов. Смесь 0,1 моля имина и 120 мл 10% серной кислоты оставляют на ночь, затем эфиром отделяют органический слой и сушат над хлористым кальцием. После удаления растворителя перегонкой получают алкилированные альдегиды и кетоны (табл. 2).

ЛИТЕРАТУРА

- 1. А. Ц. Казарян, Г. Т. Мартиросян, Арм. хим. ж., 25, 861 (1972).
- 2. Г. Т. Маргиросян. А. Ц. Казарян, С. О. Мисарян, Арм. хим. ж., 26, 569 (1973).
- 3. Э. А. Григорян, А. Ц. Казарян, К. С. Лусарарян, Г. Т. Мартиросян, Арм. XIIM. ж., 27, 304 (1974).
- 4. А. Ц. Казарян, Л. В. Асратян, Г. Т. Мартиросян, Арм. хим. ж., 28, 477 (1975).
- 5. А. Ц. Малхасян, Г. Г. Сукиасян, Л. А. Меграбян, Г. Т. Мартиросян, Арм. хим. ж., 28, 815 (1975).

the district of the state of the state of the

the state of the s

The second of the second of