XXIX, № 12, 1976

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.81

СИНТЕЗ ДИГИДРОПИРАНОВ НА ОСНОВЕ МЕТАЛЛИЛКАРБИНОЛА

А. А. ГЕВОРКЯН и А. С. АРАКЕЛЯН

Институт органической химии АН Армянской ССР, Ереван Поступило 20 IV 1976

Взаимодействие металлилкарбинола с альдегидами и кетонами в присутствии п-толуолсульфокислоты приводит к смеси 4-метилентетрагидропирана, 5,6- и 3,6-дигидропиранов. С целью определения соотношения этих изомеров в смеси изучено хроматографическое поведение модельных метилдигидропиранов и 4-метилентетрагидропирана.

Табл. 1, библ. ссылок 6.

Металлилкарбинол благодаря доступности [1] и уникальности строения может служить исходным сырьем для самых разнообразных синтезов. Однако многие его реакции до сих пор остаются неизученными. В этом аспекте определенный интерес представляет его реакция с альдегидами в присутствии кислых агентов, приводящая к образованию тетрагидропиранов [2].

В настоящем ссобщении нами показано, что металлилкарбинол при нагревании с альдегидами в присутствии *п*-толуолсульфокислоты дает производные дигидропирана. Аналогично, но более вяло, он вза-имодействует с кетонами. Выхсды целевых продуктов достигают 85% (табл.). ГЖХ продуктов реажции показывает, что они состоят из смеси трех соединений, предположительно, 2-замещенных 4-метил-3,6(и 5,6)-дигидропиранов и 2-замещенного 4-метилентетрагидропирана.

$$\begin{array}{c|cccc}
CH_3 & CH_2 & CH_3 & CH_3 \\
\hline
OH + R' & C=0 & \hline
& R' & OR & R' & OR & R'
\end{array}$$

$$\begin{array}{c|ccccc}
CH_3 & CH_3$$

Для доказательства того, что полученные соединения, действительно, отличаются друг от друга только положением двойной связи и имеют одинаковый углеродный скелет, смесь продуктов, полученная на основе изо-масляного альдегида, была гидрохлорирована. При —80° произошло гладкое присоединение хлористого водорода с образованием 2-изопропил-4-метил-4-хлортетрагидропирана, идентичного по данным ГЖХ и константам с образцом, полученным хлоралкилированием металлилкарбинола и изо-масляного альдегида под действием хлористого водорода [2].

Для отнесения хроматографических пиков и, следовательно, определения доли каждого из изомеров в продуктах реакции нами были синтезированы 2-метил-5,6- и 3,6-дигидропираны, 4-метилдигидро- и 4-метилентетрагидропиран, являющиеся моделями полученных соединений, и определены относительные времена их удерживания. Было показано, что на аналитической 2 м набивной колонке (5% апиезона М или Л на хроматоне), применяемой при хроматографировании продуктов циклоалкилирования металлилкарбинола, 4-метилентетрагидропиран выходит раньше 4-метил-5,6-дигидропирана. Это что в хроматограммах продуктов циклоалкилирования металлилкарбинола наименее полярные пики соответствуют 4-метилентетрагидропиранам. Вопрос отнесения двух других пиков к 2-алкил-4-метил-3,6- и 2-алкил-4-метил-5,6-дигидропиранам мы решили, синтезировав заведомо известные образцы 2-метил-3,6- и 2-метил-5,6-дигидропиранов и определив последовательность их элюирования на данной колонке.

2-Метил-3,6-дигидропиран был получен дегидробромированием 2-метил-3-бромтетрагидропирана, образующегося в виде смесы цистранс-изомеров (17:83) при взаимодействии бромистого метилмагния с транс-2,3-дибромтетрагидропираном [3].

Дегидрохлорированием 2-метил-4-хлортетрагидропирана Колонж и сотр. [4] получили продукт, которому без доказательства приписали строение 2-метил-3,6-дипидропирана. Хеншке, получивший тот же

продукт дегидратацией 2-метилтетрагидропиранола-4 [5], полагал, что он является либо 2-метил-3,6-дигидропираном, либо 2-метил-5,6-дигидропираном.

Нами показано, что 2-метил-4-хлортетрагидропиран, являющийся смесью цис-транс-изомеров с преобладанием (83%) менее полярного транс-изомера, при дегидрохлорировании, действительно, образует продукт, описанный Колонжем и Хеншке. Однако выяснилось, что этот продукт по ГЖХ представляет собой смесь двух соединений (87:13), основным компонентом которой является 2-метил-5,6-дигидропиран, т. е. «дигидропиран» Колонжа и Хеншке, в действительности, является смесью 2-метил-3,6- и 2-метил-5,6-дигидропиранов, из которых наиболее полярным на колонке с 5% апиезона на хроматоне будет последний.

Основываясь на вышеиэложенном, мы в хроматограммах продуктов циклоалкилирования металлилкарбинола первые пики отнесли к метилентетрагидропиранам, вторые—к 3,6-дигидропиранам, а третьи—к 5,6-дигидропиранам.

Изомерный состав и константы некоторых синтезированных производных дигидропирана приведены в таблице.

Образование смеси изомеров при циклоалкилировании металлилкарбинола альдегидами и кетонами, по-видимому, объясняется промежуточным образованием тетрагидропиранильного карбкатиона, способного стабилизироваться по трем возможным направлениям.

$$\begin{array}{c}
CH_{3} \\
CH_{3}
\end{array}$$

Однако не исключена возможность образования промежуточного тетрагидропиранильного карбкатиона и из соответствующего тетрагидропиранола. В пользу этого свидетельствовало наличие значительных количеств (до 40%) тетрагидропиранолов в тех опытах, где выделение воды не доводилось до конца.

Действительно, специальными опытами, поставленными с 4-метил-2-изо-пропил- и 2,4-диметил-2-бутилтетрагидропиранолом-4, показано, что последние в условиях опыта легко дегидратируются с образованием тех же смесей продуктов, которые получаются из металлилкарбинола и изо-масляного альдегида или метилбутилкетона, соответственно.

Экспериментальная часть

Чистоту и идентичность, а также соотношение получениых дигидропиранов контролировали ГЖХ на приборе ЛХМ-8 с катарометром. Разделение проводили на аналитических колонках длиной 2 м, наполненных 5% апиезона Л, М и 5% трицианэтоксипропана на хроматоне. Температура разделения 80, 130 и 150°, скорость газа-носителя (гелий) 40—60 мл/мин.

Взаимодействие альдегидов и кетонов с металлилкарбинолом. В двухтубусной колбе, снабженной аппаратом Дина-Старка, нагревали в среде бензола смесь альдегида (или кетона), металлилкарбинола и каталитических количеств п-толуолсульфокислоты до прекращения выделения воды. После отгонки растворителя разгонкой выделяли продукт реакции.

4-Метил-2-изопропил-4-хлортетрагидропиран. Через 3,5 г (0,025 моля) смеси 4-метил-2-изопропил-3,6 (и 5,6)-дигидропиранов и 4-метилен-2-изопропилтетрагидропирана в 10 мл хлористого метилена при —80° пропускали ток сухого хлористого водорода до насыщения. Затем хлористый метилен отгоняли, остаток разгоняли в вакууме. Выход 4-метил-2-изопропил-4-хлортетрагидропирана 3,68 г (84%), т. кип. 83°/14мм, по 1,4600 [2].

2,4-Диметил-2-бутилтетрагидропиранол-4, К реактиву Гриньяра, полученному из 9,94 г (0,07 моля) йодистого метила, при охлаждении ледяной водой прикапывали 8,5 г (0,055 моля) 2-метил-2-бутилтетрагидропиранона-4 [6]. Смесь перемешивали 4 часа и гидролизовали водным раствором хлористого аммония, эфирный раствор сливали, осадок несколько раз промывали эфиром. После удаления эфира остаток разгоняли в вакуумє. Получено 4,8 г (47%) продукта с т. кип. 85—87°/ Змм, п²⁰ 1,4644.

4-Метил-2-изопропилтетрагидропиранол-4 получен аналогично из 14,2 г (0,1 моля) йодистого метила и 10 г (0,07 моля) 2-изопропилтетрагидропиранола-4. Выход 12 г (75%), т. кип. 98—99°/12 мм, n_D^{20} 1,4609.

Дегидратация 4-метил-2-изопропилтетрагидропиранола-4. Смесь 7 г (0,04 моля) 4-метил-2-изопропилтетрагидропиранола-4, каталитического количества п-толуолсульфокислоты и 30 мл сухого бензола нагревали до прекращения выделения воды в двухтубусной колбе, спабженной аппаратом Дина-Старка. Бензол отгоняли и остаток разгоняли в вакууме. Получено 3,65 г (65%) смеси 4-метил-2-изопропил-3,6 (и 5,6)-дигидропиранов и 4-метилен-2-изопропилтетрагидропирана, перегнавшейся при 62—64°/16 мм, пропиранов и изо-масляного альдегида (табл.).

Дегидратация 2,4-диметил-2-бутилтетрагидропиранола-4 проводняась аналогично. Из 2,8 г (0,015 моля) 2,4-диметил-2-бутилтетрагидропиранола-4 получено 1,45 г (54%) смеси 2,4-диметил-2-бутил-3,6 (и 5,6)-

2
,,

R	R'	Процентное соотно- шение изомеров 1:II:III	Т. кип., °С/.и.и	Выход, °/0	d ²⁰	n ²⁰ _D	C. º/。		H, º/o	
							найдено	вычис-	найдено	вычис-
CH ₃	Н	_	122—124/680	40	0,8977	1,4499	75,12	75,00	10,71	10,71
CH ₃	CH ₃	0,54:53,15:46,30	132 —133/680	40	0,8658	1,4410	75,26	76,19	11,11	11,11
H-CaHa	н	68,2:8,7:22,05	66 - 68/17	64	0,8851	1,4495	76,28	77,14	11,35	11,43
изо-С ₃ Н ₇	Н	1:38:61	60-61/17	82	0,8710	1,4495	76,63	77,14	11,78	11.43
н-C ₄ H ₉	CH ₃	40,43:22,38:37,19	97-98/21	73	0,8993	1,4515	78,52	78,57	11,70	11,90
CH=CH	Н		54-56/20	45	0,9189	1,4679	77,25	77,42	9,98	9,67
CH=CH-CH ₃	Н	_	72—74/18	50	0,9196	1,4761	77,56	78,28	9,90	10,14
C ₆ H ₅	Н	0,5:19,5:80	98/2	50	1,0199	1,5402	82,92	82,75	8,03	8,04
mpem-C ₄ H ₉	CH ₃	70,1:3,2:26,7	88 - 89/18	21	0,9020	1,4680	78,54	78,57	11,63	11,90
C ₆ H ₁₃	Н	0,2:33:67,8	101/6	73	0,8936	1,4651	78,56	79,12	11,81	12,09
C ₂ H ₅	C ₂ H ₅	51,6:23,8:25,6	83—85/23	41	0.8985	1,4552	77,58	77,92	12,01	11,69
C5H11	C ₅ H ₁₁	0,4:68,6:31	126 – 127/5	83	0,8861	1,4615	81,10	80,67	12,70	12,60
CH ₃							-		3.0	
СН₂СН	-CH ₂ CH ₂ -O-	0,7:64:35,3	100—101/5	45	1,0160	1,4821	71,35	71,74	10,34	10.87
CH3										
$R + R' = (-CH_2 -)_4$		0,2:55:44,8	65/4	41	0,9754	1,4805	78,89	78,94	10,18	10,53
$R + R' = (-CH_2 -)_5$		0,8:69:30,2	79,5/4	63	0,9781	1,4862	80,12	79,52	10,48	10,84
изо-С ₄ Н,	Н	38,3:3,1:58,6	68-70/13	84	0,8606	1,4485	78,00	77,92	12,22	11,70

дигидропиранов и 2-метил-2-бутил-4-метилентетрагидропирана с т. кип. $86-88^{\circ}/12$ мм, n_D^{20} 1,4515, идентичной с продуктом циклоалжилиро-

вания металлилкарбинола метилбутилкетоном (табл.).

Дегидрохлорирование 2-метил-4-хлортетрагидропирана проводили по [4]. Получен продукт (выход 75%, т. кип. 100—103°/680 мм, проводили 1,4360), описанный Колонжем и сотр. [4]. ГЖХ дегидрохлорината по-казывает два пика в соотношении 87:13, более полярный из которых соответствует 2-метил-5.6-дигидропирану.

2-Метил-5,6-дигидропиран синтезирован по [3] дегидробромированием транс-2-метил-3-бромтетрагидропирана. В результате получен хроматографически чистый 2-метил-5,6-дигидропиран с выходом 74%,

т. кип. 103—105°/680 мм, п²⁰ 11,4401 [3].

ԴԻՀԻԴՐՈՊԻՐԱՆՆԵՐԻ ՍԻՆԹԵՉ ՄԵՏԱԼԻԼԿԱՐԲԻՆՈԼԻ ՀԻՄՔԻ ՎՐԱ

Ա. Ա. ԳԵՎՈՐԳՅԱՆ և Ա. Ս. ԱՌԱՔԵԼՑԱՆ

Մետալիլկարբինոլը, պ-տոլուոլսուլֆոթթվի ներկայությամբ, ալդեհիդների և կետոնների հետ առաջացնում է 3,6-և 5,6-դիհիդրո- և մեթիլենտետրահիդրոպիրանների խառնուրդ։ Այդ խառնուրդում քրոմատոգրաֆիկ համապատասխան վերագրումները կատարելու համար սինթեղվել են մոդելային դիհիդրո- և մեթիլենտետրահիդրոպիրաններ։

Կատարված ուսումնասիրությունները Հնարավորություն են տալիս խառնուրդում որոշել նշված իզոմերների քանակական պարունակությունը։

SYNTHESIS OF DIHYDROPYRANS ON THE BASIS OF METALLYL CARBINOL

A. A. GUEVORKIAN and A. S. ARAKELIAN

The interaction of metallyl carbinol with aldehydes and ketones in the presence of p-toluenesulfonic acid leads to the formation of a mixture of dihydro and tetrahydropyrans.

The chromatographical behaviour of model samples of methyldihydro and 4-methyltetrahydropyrans was investigated to determine the proportional quantities of these isomers in the mixture.

ЛИТЕРАТУРА

- 1. С. К. Огородников, Г. С. Идилс, Производство изопрена, Изд. «Химия», Л., 1973.
- 2. А. А. Геворкян, П. И. Казарян, Арм. хим. ж., 28, 509 (1975).
- 3. G. Berti, G. Cafelani, M. Ferretti, Z. Monti, Tetrah., 30, 4013 (1974).
- 4. J. Colonge, P. Botsde, Bull. Soc. Chim. Pr., 1956, 524.
- 5. E. Hanschke, Chem. Ber., 88, 1055 (1955).
- 6. А. Н. Елизарова, И. Н. Назаров, Изв. АН СССР, № 2, 223 (1940).