XXIX, № 11, 1976

УЛК 541.161

ЗАВИСИМОСТЬ МЕЖДУ ИК СПЕКТРАМИ И ЖИДКОКРИСТАЛ-ЛИЧЕСКОЙ СПОСОБНОСТЬЮ ДЛЯ НЕКОТОРЫХ ШИФФОВЫХ ОСНОВАНИЙ И ПРОИЗВОДНЫХ ГИППУРОВОЙ КИСЛОТЫ

3. А. ГРИГОРЯН, С. Г. КАЗАРЯН, О. В. АВАКЯН, С. А. ҚАЗАРЯН и А. Х. ПОЧИКЯН

Горисские лаборатории ВЦ АН Армянской ССР Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР, Ереван

Поступило 7 І 1976

Исследованы ИК спектры пекоторых шиффовых оснований и производных гиппуровой кислоты в области частот 1500—3500 см-1 в чистом виде, растворах и смесях при 20°. Найдена зависимость между ИК спектрами и способностью молекул образовывать жидкокристаллическое (ЖК) состояние.

Рис. 2, табл. 1, библ. ссылок 6.

В работах [1, 2] методом ИК спектроскопии показано наличие линий поглощения, характеризующих ЖК свойства молекул. Можно было предположить, что эта закономерность соблюдается для нематических ЖК веществ. Исходя из этого в настоящей работе исследованы ИК спектры некоторых других шиффовых оснований и производных гиппуровой кислоты в различных состояниях.

Экспериментальная часть

Шиффовые основания получены конденсацией *п*-замещенных альдегидов с соответствующими анилинами в среде этилового спирта по [3]. Продукты многократно перекристаллизовывались из этанола до постоянной точки плавления и сушились в вакуум-эксикаторе до постоянного веса. Определены молекулярные веса и сняты ИК спектры продуктов, свидетельствующие об их чистоте.

п-Этокси-, амилокси- и аллилоксибензальдегиды получены по [3]. Исследованные производные гиппуровой кислоты синтезированы по методике, описанной в [4, 5].

ЖК способность полученных веществ проверялась методами динамического рассеяния и двойного лучепреломления. ИК спектры снимались на двухлучевом ИК-спектрофотометре UR-20 в области частот 1500—3500 см⁻¹ при 20°.

Результаты и обсуждение

Из таблицы видно, что *п'*-метоксибензилиден-*п-н*-бутиланилин (МББА), *п'*-этоксибензилиден-*п-н*-бутиланилин (ЭББА), *п*-метоксибензилиден-*п*-толуидин, *п'*-амилоксибензилиден-*п*-толуидин, *п'*-метоксибензилиден-*п*-толуидин, *п'*-метоксибензилиден-*п*-анизидин в области 1900—2500 *см*⁻¹ дают полосы поглощения средней и слабой интенсивности, почти не отличающиеся по частотам (рис. 1, а). Методами динамического рассеяния и двойного лучепреломления показано, что указанные вещества обладают ЖК свойствами.

Tubanna

Наименование веществ	Т. пл., °С	ЖК свойства
n'-Метоксибензилиден-n-и-бутиланилин	19	имеет
n'-Этоксибензилиден-n-н-бутиланилин	32	имеет
п-Оксибензилиденанилин	188	не имеет
п-Метоксибензилиденанилин	63	не имеет
п-Этоксибензилиденанилин	68	не имеет
п'-Оксибензилиден-п-йоданилин	194	не имеет
п-Метоксибензилиден-п-йоданилин	151	не имеет
л-А цетоксибензилиденанилин	187	не имеет
п'-Бромметилбензилиден-п-йоданилин	50	не имеет
п'-Оксибензилиден-п-толуидин	206	не имеет
п'- Метоксибензилиден- п -толуидин	92,5	имеет
n'- Амилоксибензилиден-n-толуидин	62	пмеет
n'-Аллилоксибензилиден-n-толуидин	60	не имеет
п'-Бромметилбензилиден-п-толуидин	92	не имеет
n'-Метоксибензилиден-n-анизидин	147	имеет
Гиппуровая кислота	188	имеет
п-Метомсигиппуровая кислота	161	не имеет
п-н-Бутоксигиппуровая кислота	143	не имеет
л-Метоксибензоилглицилглицин	211	не имеет
Эг. эфир п-метоксибензонлглицияглицина	111	не имеет
Эт. эфир п-н-бутоксибензоилглицилглицина	109	не имеет
Эт. эфир п-изобутоксибензоилглицилглицина	143	не имеет
Эт. эфир п-изоамилоксибензоилглицилглицина	144	не имеет

В случае *п*-оксибензилиден-, *п*-метоксибензилиден-, *п*-этоксибензилиден-, *п*-оксибензилиден-, *п*-оксибензилиден-, *п*-оксибензилиден-, *п*-оксибензилиден-, *п*-оксибензилиден-, *п*-оксибензилиден-, *п*-оксибензилиден-, *п*-оксибензилиден-, *п*-оксибензилиден-, *п*-бромметилбензилиден-*п*-толуидинов соответствующис линии поглощения отсутствуют (рис. 1, б), ЖК свойства не обнаружены.

ИК спектры этих веществ исследованы также в растворах. Из-за низкой растворимости в бензоле в некоторых случаях в качестве

растворителя использован ацетон. Для веществ, находящихся при комнатной температуре в твердом состоянии, исследованы ИК спектры в смесях с КВг.

Согласно полученным данным, в случае веществ, обладающих ЖК свойствами, сохраняются поглощения в области 1900—2500 см⁻¹. Для веществ, не обладающих этим свойством, эти поглощения отсутствуют.

Полученные результаты подтверждают предположение о том, что вышеупомянутые поглощения относятся к молекулам и характеризуют способность молекул к образованию ЖК системы.

В случае справедливости сказанного можно было бы разработать простейший физико-химический метод обнаружения в растворах и смесях ЖК веществ.

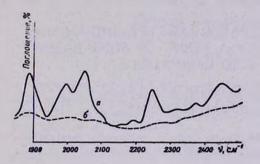


Рис. 1. а. ИК спектры поглощения МББА в области 1900—2500 см-1. 6. ИК спектры поглощения п-оксибензилиденанилина в области 1900—2500 см-1.

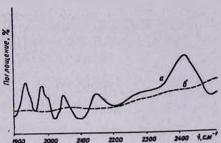


Рис. 2. а. ИК спектры поглощения гиппуровой кислоты в области 1900— 2500 см-1.

б. ИК спектры поглощения бутоксигиппуровой кислоты в области 1900— 2500 с.м-1.

Известно, что гиппуровая кислота обладает ЖК свойствами [6]. Для проверки применимости вышеупомянутого метода нами исследованы ИК спектры и ЖК свойства некоторых производных гиппуровой кислоты. Оказалось, что из исследованных веществ (табл.) только у гиппуровой кислоты наблюдаются линии поглощения в области 1900—2500 см⁻¹, однако менее интенсивные (рис. 2, а). Для других производных соответствующие линии поглощения отсутствуют, а эффект динамического рассеяния не наблюдается (рис. 2, б). В растворах в хлороформе и смесях с КВг ИК спектры остались без изменения. Следовательно, наблюдаемая закономерность применима и к производным гиппуровой кислоты.

Обобщая сказанное можно отметить, что для шиффовых оснований и производных гиппуровой кислоты найдена зависимость между ИК опектрами и ЖК способностью.

Полученные данные позволяют предположить, что ЖК способность отражена в строении молекул и ее можно экспериментально определить.

ԻԿ ՍՊԵԿՏՐՆԵՐԻ ԵՎ ՀԵՂՈՒԿԲՅՈՒՐԵՂԱԿԱՆ ՀԱՏԿՈՒԹՅԱՆ ՄԻՋԵՎ ԳՈՅՈՒԹՅՈՒՆ ՈՒՆԵՑՈՂ ԿԱՊԸ ՄԻ ՔԱՆԻ ՇԻՖԻ ՀԻՄՔԵՐԻ ԵՎ ՀԻՊՈՒՐԱԹԹՎԻ ԱԾԱՆՑՑԱԼՆԵՐԻ ՀԱՄԱՐ

д. ц. ԳՐԻԳՈՐՑԱՆ, Ս. Գ. ՂԱԶԱՐՅԱՆ, Հ. Վ. ԱՎԱԳՑԱՆ, Ս. Հ. ՂԱԶԱՐՑԱՆ և Ա. Խ. ՓՈՉԻԿՑԱՆ

Ուսոսքնասիրված են մի քանի Շիֆի հիմքերի և հիպուրաԹԹվի ածանցյալների ԻԿ սպեկտրները 1500—3500 ռմ⁻¹ մարզում մաքուր վիճակում, լուծույթներում և խառնուրդներում 20°-ում։

Գտնված է կապ նշված նյութերի ԻԿ սպեկտրների և մոլեկուլների հեդուկայուրեղական վիճակ առաջացնելու ընդունակության միջև։

DEPENDENCE BETWEEN INFRARED SPECTRA AND LIQUID CRYSTALLINE PROPERTIES IN A SERIES OF SHIFF BASES AND HIPPURIC ACID DERIVATIVES

Z. A. GRIGORIAN, S. G. KAZARIAN, H. V. AVAKIAN, S. H. KAZARIAN and A. Kh. POCHIKIAN

Infrared spectra of several Shiff bases and hippuric acid derivatives, were investigated in a frequency range of $1500-3500 cm^{-1}$ in pure state, in solutions and mixtures at 20° C.

A dependence was found between IR spectra and the ability of molecules to form liquid crystalline states.

ЛИТЕРАТУРА

- 1. З. А. Григорян, Г. Г. Петросян, В. К. Мирзоян, А. Х. Почикян, Арм. хим. ж., 29, 916 (1976).
- 2. К. А. Наринян, З. А. Григорян, А. Х. Почикян, Арм. хим. ж., 29, 921 (1976).
- Г. Г. Майдаченко, Л. А. Гусакова, Сб. докладов II Всесоюзн. науч. конференцин по жидким кристаллем, Иваново, 1973.
- 4. О. Л. Миджоян, Д. А. Далогланян, Арм. хим. ж., 26, 675, (1973).
- О. Л. Миджоян, С. А. Казарян, Г. П. Алебян, Н. Л. Лукьяненко, А. О. Мовсесян, Арм. хим. ж., 28, 417, (1975).
- 6. W. Harrison, S. Retting, I. Trotten, J. Chem. Soc. Perkin Trans., 1036, 1972.