XXVIII, № 9, 1975

УДК 547.1

СИНТЕЗ И ПРЕВРАЩЕНИЯ В, v-НЕПРЕДЕЛЬНЫХ АМИНОВ

XXVIII. ВЗАИМОДЕЙСТВИЕ транс-1,4-ДИГАЛОГЕН-2-АЛКЕНОВ СО ВТОРИЧНЫМИ ДИАМИНАМИ

н. г. нонезян, э. а. григорян в г. т. мартиросян

Всесоюзный научно-исследовательский и проектный институт полимерных продуктов, Ереван

Поступило 14 III 1975

При взанмодействии транс-1,4-дигалоген-1-алкенов со вторичными диаминами в присутствии водной щелочи при соотношении реагентов 1:1:2 имеет место исключительная или предпочтительная линейная поликонденсация, приводящая к растворимым олигомерным полиаминам. Разработан способ синтеза бис-1,4-алкиламино-2-алкенов.

Табл. 3, библ. ссылок 3.

Недавно нами был разработан способ получения линейно-растворимых олигомерных полиаминов неравновесной поликонденсацией первичных аминов с транс-1,4-дигалоген-2-алкенами [1].

Можно было предположить, что, вопреки литературным данным [2], по этому способу удастся осуществить и линейную поликонденсацию вторичных диаминов с транс-1,4-дигалоген-2-алкенами.

С этой целью нами была изучена поликонденсация N,N'-дифенилпарафенилендиамина (1) с транс-1,4-дигалоген-2-алкенами (1,4-диброми 1,4-дихлор-2-бутены, 1,4-дибром-2-метил-2-бутен, 1,4-дибром-2-хлор-2-бутен и 1,4-дибром-2,3-дихлор-2-бутен) в присутствии двойного мольного количества 10% водной щелочи при 20—90°.

И действительно, в случае I с хорошими выходами были получены исключительно линейно-растворимые полиамины II (табл. 1).

$$\begin{array}{c} \text{PhHN} & \text{NHPh} + \text{HalCH}_2\text{CR} = \text{CR'CH}_2\text{Hal} \xrightarrow{\overline{OH}} \\ & & \\$$

Было интересно изучить поликонденсацию бис-1,4-алкиламино-2-алкенов с транс-1,4-дигалоген-2-алкенами, т. к. этим способом, имея различные заместители в ненасыщенных группах диаминов и дигалогенидов, можно было получить сополиконденсационные полиамины

RNHCH₂CR¹ = CR¹¹CH₂NHR+HalCH₂CR¹11=CR¹¹CH₂Hal
$$\xrightarrow{\overline{OH}}$$
 - (-NRCH₂CR¹ = CR¹¹CH₂NRCH₂CR¹¹ICR¹¹VCH₂-)_n

В литературе отсутствуют способы синтеза бис-1,4-алкиламино-2-алкенов. Имеется лишь указание, что взаимодействие первичных аминов с транс-1,4-дихлор-2-бутеном приводит к смолистым продуктам [3].

Нам удалось разработать метод получения желаемых диаминов применением большого избытка первичных аминов. Так, взаимодействием циклогесиламина с 1,4-дибром-2-алкенами при соотношении амина к дибромиду 5—20:1 были получены ожидаемые диамины с выходами 50—70% (табл. 2).

Как и следовало ожидать, поликонденсация полученных бис-1,4-циклогексиламино-2-алкенов с транс-1,4-дигалоген-2-алкенами приводит к линейно-растворимым олигомерным полиаминам IV (табл. 3).

$$III + HalCH2CR"=CR"CH2Hal \xrightarrow{\overline{OH}}$$

$$\longrightarrow -\left(-NCH2CR=CR'CH2NCH2CR"=CR"'CH2-\right)$$

$$IV$$

Экспериментальная часть

Поликонденсация N,N'-дифенилпарафенилендиамина с транс-1,4-дигалоген-2-бутеном. Смесь 0,05 моля N,N'-дифенилпарафенилендиамина, 0,05 моля 1,4-дигалоген-2-бутена и 0,15 моля 10% водного раствора едкого кали перемешивают 1 час при комнатной температуре и 3,5 часа при 80°. О конце реакции судят по количеству израсходованной щелочи (титрованием). Осевший полимер отфильтровывают, промывают горячей водой, спиртом. Полученный полимер очищают растворением в бензоле и осаждением эфиром. Данные приведены в табл. 1.

1,4-бис-Циклогексиламино-2-алкены. К 1,5 моля циклогексиламина при перемешивании и нагревании (130°) в течение 40—60 мин. прикапывают 0,1 моля транс-1,4-дибром-2-алкена. После охлаждения бром-

гидрат фильтруют, фильтрат перегоняют. Выходы диаминов и некоторые физико-химические константы приведены в табл. 2. На примере взаимодействия циклогексиламина и транс-1,4-дибром-2-метил-2-бутена показано, что при соотношениях 20:1,10:1 и 5:1 выходы диамина составляют 60, 51, 51%, соответственно. В случае 1,4-дибром-2,3-дихлор-2-бутена при соотношении 8:1 выход диамина составляет 58%. С уменьшением соотношения амина и дибромида до 8—5:1 наряду с диамином получается также 4 г полиамина с (η) = 0,04—0,06. Только в случае транс-1,4-дибром-3-метил-2-бутена наряду с диамином получается также низкокилящий амин с т. кип. 81—85°/2 мм, который нами ближе не изучен.

Таблица / Полиамины (II), полученные на основе N.N'-дифенилпарафенилендиамина

	R'	Выход, "/о	Т. пл.,	N.	20°	
R			*C **	найдено	вычис- лено	[η] ДМФ
Н	СН	99,1	214—221	8,19	8,58	0,053*
Н	CI	93,8	137—158	8,03	8,08	0,07**
Н	Н	93.88	130—150	9,69	8,97	0,027***
Н	Н	91,88	160—180	9.03	8,97	0,072
CI	CI	97,9	110-143	7,65	7,35	0,073

^{*} В СНСІ3: ** В СаНа; *** Полимер получен из 1,4-дихлор-2-бутена.

Таблица 2

		%	Т. кип., °С/мм		d ²⁰	N, º/o		М по тит- рации		Water.
R	R'	Buxoa, º/		n 20		найдено	вычис-	найдено	вычис-	Примечание
н	СН	60	171—172/2	1,5026	0,9464	10,38	10,6	266	264	Получен также продукт с т. кип. 81—85°/2 (~20°/ _e)
Н	Н	48,1	135-138/1	_	7 -	11.09	11,2	248	250	
H	CI	60	167—169/3	1.5121	1,0348	9,93	9,84	285	284,5	Т. пл. 46°
CI	CI	76.6	181—182/2	1.5180	1,0902	9,01	8,75	321	319	

Индивидуальность полученных диаминов доказана при помощи ГЖХ, на хроматографе ЛХМ-8 МД (газ-носитель—гелий, скорость 1,7—2,0 л/час, длина колонки 1 м, температура 170—280°, твердая фазл ПДЭГС 10%, на хроматоне Н).

Поликонденсация 1,4-бис-циклогексиламино-2-алкенов с транс-1,4-дибром-2-алкенами. К смесн 0,05 моля 1,4-бис-циклогексиламино-2-ал-

кена, 0,1 моля 10% водного раствора едкого натра прикапывают 0,05 моля транс-1,4-дибром-2-алкена. Реакционную смесь перемешивают при комнатной температуре 1 час и при 80° 3—4 часа. Конец реакции определяют по количеству израсходованной щелочи (титрованием). Полиамин фильтруют, растворяют в хлороформе. Сшитый полимер отделяют фильтрацией. Отгонкой хлороформа из раствора выделяют полиамины. Данные приведены в табл. 3.

Полнамины IV

Таблица 3

			R'''	Выход, 0/0	Т. пл. °C	PI I A	N, º/o		
R	R'	R‴				20° [ŋ] CHCI₃	найдено	вычис-	
Н	CH ₃	CI	CI	77,9*	115—124	0,062	7,27	7,27	
Н	CH ₃	Н	CH ₃	78,1	105—130	0,073	8,12	8,48	
Н	CI	Н	Н	91	вязкий	0,07	8,18	8,32	
Н	Cl	н	Cl	84	128—150	0,04	7,12	7,54	
Н	CI	Н	CH ₃	98,2	110—127	0,06	7,97	7,98	
Н	CI	Н	CI	80,1	вязкий	0,055	8,02	7,54	
Н	Н	CI	CI	87,8	вязкий	0,071	7,21	7,54	
CI	CI	Н	Н	96,9	125—148	мет. 0.066	8,3	7,54	
Н	н	Н	Н	36,5	116—122	0,078	9,08	9,27	
Н	Н	Н	CI	67,6	119—138	0,05	8,57	8,3	
CI	CI	Н	CH ₃	98,6	119—145	0,072	7,43	7,27	
CI	Cl	Н	CI	94,1	90—111	0,056	7,12	6,9	

^{*} Получено также 10°/_в сшитого полимера.

_{թ,γ}–ՉՀԱԳԵՑԱԾ ԱՄԻՆՆԵՐԻ ՍԻՆԹԵԶ ԵՎ ՓՈԽԱՐԿՈՒՄՆԵՐ

XXVIII. առանս–1,4-ԴԻՀԱԼՈԳԵՆ-2-ԱԼԿԵՆՆԵՐԻ ՓՈԽԱԶԴԵՑՈՒԹՑՈՒՆԸ ԵՐԿՐՈՐԴԱՑԻՆ ԴԻԱՄԻՆՆԵՐԻ ՀԵՏ

Ն. Գ. ՆՈՆԵԶՑԱՆ, Է. Ա. ԳՐԻԳՈՐՑԱՆ և Գ. Թ. ՄԱՐՏԻՐՈՍՑԱՆ

Տույց է տրվել, որ առանա-1,4-դի⁄ալոգեն-2-ալկենները երկրորդային դիամինների հետ 10% ջրային հիմքի ներկայությամբ առաջացնում են գծային լուծելի պոլիմերներ։ Մշակվել է բիա-1,4-ալկիլամինո-2-ալկենների սինթեզի եղանակ։

^{**} Получено из 1,2,4-трихлор-2-бутена.

THE SYNTHESIS AND CONVERSION OF β,τ-UNSATURATED AMINES

XXVIII. THE REACTION OF SECONDARY DIAMINES WITH trans-1,4-DIHALOGEN-2-BUTENES

N. G. NONEZIAN, E. A. GRIGORIAN and G. T. MARTIROSSIAN

It has been shown, that the reaction of 1,4-dihalogen-2-butenes with secondary diamines in $10^{\circ}/_{\circ}$ aqueous alkaline solution produces linear soluble polymers.

ЛИТЕРАТУРА

1. Г. Т. Мартиросян, Н. Г. Нонезян, Арм. хим. ж., 27, 691, 983, (1974).

2. Р. Хувинк, А. Ставерман, Химия и технология полимеров, Изд. «Химия», М.—Л., 1965. стр. 83.

3. L. A. Amundsen, R. H. Mayer, L. S. Pitts, L. A. Malentacchi, J. Am. Chem. Soc 73, 2118 (1951).