Д Ц В Ч Ц Ч Ц Ъ Р Г Р Ц Ч Ц Ъ Ц Г И Ц Р Р Г АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXVIII, № 7, 1975

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 620.186.2+541.123.25

O СТАБИЛЬНОЙ ЛИКВАЦИИ В СИСТЕМАХ FeO—SiO₂, CoO—SiO₂ и NiO—SiO₂

С. А. БАБАЯН

Ереванская опытно-методическая партня ВНИИгеолнеруд

Поступило 15 II 1974

В системах FeO—SiO₂, CoO—SiO₂, NiO—SiO₂ изучены области стабильной ликвации. Определены предельный состав и температура начала ликвации, состав и температура критической точки ликвации, полностью оконтурены ликвационные поля. Исходя из кристаллохимических предпосылок строения расплава проведен расчет предельного состава ликвирующего расплава.

Рис. 3, табл. 2, библ. ссылок 13.

В литературе [1—3] области стабильной ликвации в системах FeO—SiO₂, CoO—SiO₂ и NiO—SiO₂ изучены недостаточно и контуры их проведены весьма приблизительно. В качестве исходных материалов использованы окиси с большим процентом примесей, что исказило общую картину всех диаграмм состояния, а в системе NiO—SiO₂ [3] изучены только подсолидусные поля кристаллизации.

Указанные системы имеют большое значение для металлургии металлов группы железа. Окиси железа, кобальта и никеля вводятся также в состав обиходных и электровакуумных стекол.

В настоящей работе подробно изучены области стабильной ликвации, образующиеся в вышеназванных системах.

Согласно Богацкому [4] и Гуфарову [5], при температурах выше 400°, а особенно интенсивно при 1000—1100° на воздухе наблюдается диссоциация как окисей, так и закисей железа, кобальта и никеля состава Me²⁺ О₁—х до состава MeO, что сопровождается изменением цвета соединений от красного до черного у железа, от черного до розового у кобальта и от серого до ярко-зеленого у никеля.

С повышением температуры до 1300—1500°, т. е. после спекания порошков чистые закиси стабилизируются и при охлаждении или полностью сохраняют свою стехиометрию (NiO) или же незначительно окисляются (FeO_{1,1}). При охлаждении в среде азота закись железа также не окисляется [6]. По Хауффе [7] закиси никеля, кобальта и железа в соединениях, особенно в силикатах, сохраняют свою стехиометрию при достаточно высоких температурах. Боуэн и Шеррер [1] при изучении

системы FeO—SiO₂ отмечают, что чистая закись железа содержала до 10 вес. % Fe₂O₃, с добавкой SiO₂ в расплаве содержание Fe₂O₃ уменьшалось, а при составах, содержащих более 33 вес. % SiO₂, т. е. после образования соединения Fe₂SiO₄, количество Fe₂O₃ в расплаве составляло менее 1 вес. %. Масс и Муан [2] также отмечают, что система CoO—SiO₂ не является строго бинарной, однако, содержание в расплавах кобальта в валентности, превышающей 2, незначительно. Количественные определения Co³⁺ ими не приводятся.

Отсутствие Ni^{3+} в составе Ni_2SiO_4 отмечается также рядом авторов [3,8].

Поэтому для исключения вероятности нахождения в смесях трехвалентных окислов железа, кобальта и никеля необходимо было провести предварительную термообработку смесей для связывания свободных закисей в силикаты.

В качестве исходных материалов использовались закиси никеля, кобальта и железа марки «ос. ч.» и дважды перегнанный кремнеэтиловый эфир (тетраэтоксисилан). Исходные смеси готовились через 1 мол. %. начиная от содержания в смесях 40 мол. % SiO₂. Количественное соотношение в смесях проверялось анализом. Расхождение с расчетными составами составляло не более 0,5 вес. % по сумме MeO+SiO₂.

Исходные смеси готовились методом соосаждения из растворов. Навески с окислами никеля, кобальта и железа переносились в платиновую чашку и растворялись в азотной кислоте. К ним добавлялось необходимое количество (по весу) раствора кремнеэтилового эфира. Смесь при непрерывном перемешивании выпаривалась на песочной бане, затем прокаливалась при 500—600° для полного удаления паров азота. Из полученного осадка прессовались таблетки, и обжигались в платиновом тигле или на платиновой подставке при 1000—1100° 10—12 час. Во время второй термообработки силикатообразование заканчивалось, благодаря чему исключалась вероятность нахождения в смесях свободных трехвалентных окислов железа, кобальта и никеля.

Отжиг и закалка образцов проводились в печи системы Галахова [9] в среде очищенного аргона, начиная от 2300°, через каждые 50° (точность определения температуры ±15°). При каждой температуре отжигались по пять образцов каждого изученного состава.

Ликвационные области устанавливались с помощью кристаллооптического анализа под микроскопом МИМ-7 и МИН-9. Для усиления контрастности применялись методики фазового контраста, темного поля и косого освещения.

Характерные образцы микрофотографировались и срисовывались с помощью рисовального аппарата.

Ликвационные области изученных систем представлены на рис. 1 (а, б, в), аналитические данные—в табл. 1.

В ликвационных полях изученных систем фазовые соотношения одинаковы, поэтому на рис. 2 (а, б) приведены характерные для всех трех систем микрофотографии ликвационных участков.

Рис. 1. Области стабильной ликвации систем: а — $FeO-SiO_2$, б — $CoO-SiO_3$, в — $NiO-SiO_2$.

Таблица 1

Система	Ионный радиус катпона, А	Т-ра крити- ческой точки, °С	Состав критиче- ской точки		Предельный состав ликвации, мол. %		Т-ра
			RO	SiO ₂	RO	SIO ₃	ликвация, °С
FeO -SIO ₂	0,80	2060	15	85	52—2	48-98	1650
CoO-SIO,	0,78	2110	12	88	53-2	47—98	1670
NIO ₂ -SIO ₃	0.74	2200	10	90	55—2	45—98	1700

Рис. 2. Микрофотографии ликвирующих областей состава 80 мол. $^{\circ}/_{0}$ SiO $_{2}$. 20 мол. $^{\circ}/_{0}$ RO: а — $t=1900^{\circ}$. ув. 240 \times , свет отраженный, фазовый контраст. Темное стекло, богатое модификатором, светлое — стеклообразователем; 6 — t=1650, 1670 и 1700 $^{\circ}$ (нижний предел ликвационной области), ув. $320\times$, свет отраженный, фазовый контраст. Наблюдается выпадение кристаялов тридимита.

Как видно из приведенных данных, предельный состав ликвирующей области обогащается окислом-модификатором, т. е. области ликвации увеличиваются с уменьшением ионного радиуса катиона. Увеличивается также значение температуры нижнего предела ликвации, критической температуры; состав критической точки обогащается окислом-стеклообразователем.

Наши данные находятся в хорошем согласии с данными Есина [10] и Бондарь [11]. Первый наблюдал подобную закономерность в системях кремнезем—окислы щелочно-земельных металлов, вторая—в системах с редкоземельными окислами. Таким образом, чем слабее связь металл-кислород, т. е. чем больше ионный радиус катиона-модификатора при одном и том же заряде, тем легче он отдает кислород стеклообразователю, ликвация происходит при больших содержаниях стеклообразователя (SiO₂), т. е. область ликвации уменьшается.

Рис. 3. Типы связи катионов-модификаторов с кислородами тетраэдра [SIO₄]: а — тип A, б — тип B.

Исходя из кристаллохимических представлений можно считать, что в стеклах осуществляется ближний порядок и его структура состоит из тетраэдров [SiO₄], соединенных между собой вершинами. При внедрении в такую структуру катиона-модификатора некоторые связи О—Si—O разрываются и образующиеся при этом свободные валентные кислороды взаимодействуют с внедренными катионами (рис. 3 а, б) по типу А, когда два катион-модификатора взаимодействуют с одним кислородом тетраэдра [SiO₄] и типу В, когда один катион-модификатор взаимодействует с двумя кислородами тетраэдра (SiO₄).

Исходя из этого, Левиным и Блоком [12—13] предложен метод расчета предельного состава ликвации. При этом допускается, что одно стекло на 100% состоит из стеклообразователя, а «предельный состав ликвации» относится исключительно ко второму стеклу. Кроме того, не принимается в расчет и маленькая область равновесия, примыкающая к стороне SiO₂.

11.72%

Согласно Левину и Блоку межкатионное расстояние S при взаимодействии по типу A расчитывается по формуле

$$S_{(A)} = 2 (r_{Me} + r_0),$$

при взаимодействии по типу В-по формуле

$$S_{(B)} = 1,154 l + 2 \sqrt{(r_{Me} + r_{O}) - 0,666 l^{3}},$$

для [SIO₄] l=1,62, r_0 —ионный радиус кислорода, а $r_{\rm Me}$ — ионный радиус катиона-модификатора. Далее отмечается, что при силе связи катиона-модификатора с кислородом больше 1/4 принимается тип A, меньше — тип B. Сила связи P рассчитывается по отношению валентности Z к координационному числу k; $P=\frac{Z}{b}$. Для наших систем

P=1/4, т. к. ионы железа, кобальта и никеля при валентности 2 образуют октаэдры (k=8).

Таким образом в наших системах в стекле, богатом модификатором, могут осуществляться взаимодействия как по типу A, так и по типу B. Определение количественного соотношения типов взаимодействия в стекле невозможно ни теоретически, ни экспериментально, поэтому принимаем его равным 1:1.

Куб катионного расстояния S³ соответствует объему стекла, отнесенному к одному катиону-модификатору. Он состоит из атомов кислорода одного атома-модификатора и атомов стеклообразователя. Так как объем атома стеклообразователя мал, и он расположен в пустотах между атомами кислорода, его объем включается в объем, занимаемый кислородами.

Объем одного атома кислорода плотнейшей упаковки принимается за $17 \, \text{Å}$. Объем катиона-модификатора V_{Me} относится к объему кислорода, как кубы соответствующих ионных радичсов.

$$V_{\text{Me}}: 17 = r_{\text{Me}}^3: r_0^3; \qquad V_{\text{Me}} = r_{\text{Me}}^3(17: r_0^3)$$

Отсюда можно рассчитать число кислородных атомов N_0 , соединенных с одним атомом катиона-модификатора

$$N_0 = \frac{S^3 - V_{Me}}{17}.$$

Зная число кислородных атомов, получим формулу для предельного состава

$$RO\frac{N_0-1}{2}SiO_2$$
.

Исходя из этих представлений, нами рассчитаны предельные составы областей ликвации для изученных систем (табл. 2).

Система	Предельные составы ликвации, мож. 6/0									
	тип А		тип В		средний расчет					
	RO	SiO ₂	RO	SiO ₂	RO	SiO,				
FeO -SiO ₂	36,11	63,89	77,5	22,5	56,70	43,20				
CDO-SIO2	37,04	62,96	78,2	21,8	57,55	42.45				
NIO,-SIO,	38,13	61,87	79,7	20,3	59,00	41,00				

Таким образом и с помощью расчета выявляются те же закономерности. Некоторые расхождения расчетных и экспериментальных данных можно объяснить как принятыми допущениями, так и более сложными взаимодействиями катион-модификаторов со стеклом —его поляризацией, некоторым деструктированием, внутренним трением в системе и т. д., которые не были учтены в расчете.

FeO-SiO₂, CoO-SiO₂ by NiO-SiO₂ Uhusbubhnhu usuahi lhydushush uuuhu

Ս. Ա. ԲԱԲԱՑԱՆ

FeO—SiO₂, CoO—SiO₂ և NiO—SiO₃ սիստեմներում ուսումնասիրված են ստարիլ լիկվացիայի տիրույթները։ Նմուշների հալումը և մըխումը կատարվել է Գալախովի սիստեմի վառարանում, մաքրված արգոնի միջավայրում, սկսած 2300° ջերմաստիճանից հետագայում 50°-ի նվազման կարգով։ Լիկվացիոն տիրույթները որոշվել են բյուրեղաօպտիկական անալիզի միջոցով։ Հաստատվել է, որ կատիոն-մոդիֆիկատորի իոնական շառավղի փոքրացման ժամանակ մեծանում է լիկվացիայի տիրույթը, նրա ստորին սահմանի և կրիտիկական կետի ջերմաստիճանները, իսկ վերջինիս բաղադրությունը հարստանում է ապակեզոյացուցիչ օքսիդով։ Բացահայտված օրինաչավությունները հաստատվել են հաշվարկով։

ON THE LIQUEFACTION OF FeO-SiO₂, CoO-SiO₂ AND NIO-SiO₂ SYSTEMS

S. A. BABAYAN

The contitions of liquefaction of FeO-SiO₂, CoO-SiO₂ and NiO-SiO₂ systems have been studied.

ЛИТЕРАТУРА

- Н. А. Боуэн. И. Ф. Шерер, Сб. классические работы по физико-химии спликатов. ОНТИ, Л., 1937, стр. 86.
- 2. D. P. Masse, A. Muan, Trans. Amer. Inst. Mining Met. Eng. No. 7, 1448 (1965).
- 3. P. Phillips, J. J. Hutta, I. Warshaw, J. Amer. Ceram. Soc., 46, 579 (1963).
- 4. Д. П. Богацкий, ЖОХ, 21, 298 (1951).
- 5. Г. И. Гуфиров, М. Г. Журавлева, Е. П. Татиевская, ДАН СССР, 73, 1209 (1950).
- 6. M. W. Shufer, J. Appl. Phys., 33, 1210 (1962).
- 7. К. Хауффе, Реакции в твердых телах и на их поверхности, ИЛ. М., 1962.
- 8. Н. Л. Торопов, С. Л. Бибаян, ЖНХ, 11, 28 (1966).
- 9. Ф. Я. Галахов, Зав. лаб., 17, 73 (1951).
- 10. О. А. Есин, Всесоюзи конф. по теоретич. и прикл. электрохимии, Изд. АН УССР. Киев, 1949, стр. 215.
- Н. А. Торопов, И. А. Бондарь, А. Н. Лазарев, Ю. И. Смолин, Силикаты редкоземельных элементов и их аналогии, Изд. «Наука», 1971, стр. 70.
- 12. E. M. Levin, St. Block, J. Amer. Ceram. Soc., 40, 95 (1957).
- 13. St. Block, E. M. Levin, J. Amer. Ceram. Soc., 40, 113 (1957).