XXVIII, № 11, 1975

УДК 547.841+547.333.2+541.69

ПРОИЗВОДНЫЕ БЕНЗОДИОКСАНА

X НЕКОТОРЫЕ N-АРИЛАЛКИЛАМИНОПРОИЗВОДНЫЕ (1,4-БЕНЗОДИОКСАН-2)-3-АМИНО-2-ПРОПАНОЛА

Э. А. МАРКАРЯН, С. О. ВАРТАНЯН, О. М. АВАКЯН и А. С. ЦАТИНЯН

Институт тонкой органической химин им. А. Л. Миджояна АН Армянской ССР, Ереван

Поступило 3 XII 1974

С целью изучения биологических свойств взаимодействием (1,4-бензодиоксан-2)-замино-2-пропавола (IV) с хлорангидридами арилалкилкарбоновых кислот получены амиды V, восстановленные алюмогидридом лития (АГЛ) в амины I.

Исследованы адренолитическое и симпатолитическое действия гидрохлоридов конеч-

Табл. 2, библ. ссылок 3.

Ранее исследованные N-замещенные арилалкиламинопроизводные 1,4бензодиоксан-2-аминоэтанолов проявили четкое симпатолитическое и адренолитическое действия [1,2].

В продолжение этих исследований с целью изучения биологических свойств синтезированы N-замещенные производные (1,4-бензодиоксан-2)-3-амино-2-пропанола (I), содержащие в α-положении к кольцу бензодиоксана как метильную, так и гидроксильную группы.

Синтез I осуществлен согласно схеме

где $R = CH(CH_3)_3$; $CH_2C_6H_5$; $CH_2CH_2C_6H_5$; $CH(C_6H_5)_3$; $3,4(CH_3O)_2C_6H_3$; $3,4(CH_3O)_2C_6H_3CH_2$; $3,4(CH_3O)_2C_6H_3CH_2$

Взаимодействием кетона II с насыщенным раствором предварительно нагретого до 50° бисульфита натрия получается соответствующее бисульфитное производное, которое под действием цианида натрия при 0° переходит в соответствующий оксинитрил III с выходом 81%. Выход непревышает 25—30% при проведении реакции без предварительного нагревания бисульфита натрия.

Восстановлением оксинитрила III АГЛ в абс. эфире (1,4-бензодиоксан-2)-3-амино-2-пропанол (IV) получается с 30% выходом. При замене эфира тетрагидрофураном с целью повышения температуры реакционной

среды выход IV новышается до 70%.

Взаимодействием IV с хлорангидридами замещенной бензойной, фенил- и дифенилуксусных и пропионовых кислот получены амиды IV, восстановленные АГЛ в среде абс. бензола в N-замещенные арилалкиламинопроизводные (1,4-бензодиоксан-2)-3-амино-2-пропанола.

Данные ИК спектров, анализа и ТСХ на силуфоловой пластинке подтверждают строение и чистоту полученных веществ.

В ИК спектре III имеется узкая полоса поглощения в области 3400 (ОН) и 2250 (СN); в ИК спектре V в области 1640 (—NH—С—), а в ИК

спектре I в области $3210-3500\ cm^{-1}$ (ассоциированные NH и OH группы).

Фармакологические иоследования показали, что полученные соединения оказывают значительное и длительное симпатолитическое действие. Наиболее активными оказались дифенилэтиловый, а также фенил-пропиловый радикалы. Они блокируют реакцию органа на электрическое раздражение на 90—95%.

Изученные соединения проявляют умеренное кратковременное блокирующее влияние на адренорецепторы.

Экспериментальная часть

ИК спектры сняты в вазелиновом масле на приборе UR-20. 1,4-Бензодиоксан-2-метилкетон синтезирован по [3].

Нитрил-2-окси-, 2-(1,4-бензодиоксан-2) пропионовой кислоты. 24 мл насыщенного раствора бисульфита натрия нагревают до 45—50° на водяной бане. Выключают баню и по каплям прибавляют 77,8 г (0,1 моля) 1,4-бензодиоксан-2-метилкетона. Реакционную смесь охлаждают до 0° и прикапывают 5,4 г (0,11 моля) цианистого натрия в 10 мл воды. Затем смесь перемешивают 3—4 часа при комнатной температуре, добавляют 30 мл эфира. Эфирный слой промывают 2—3 раза по 20 мл насыщенных растворов бисульфита натрия, поваренной соли, а также воды, сушат над бисульфатом натрия, отгоняют растворитель и добавляют петролейный эфир. При охлаждении выпадают белые кристаллы. Перекристаллизацию проводят из смеси бензол-петролейный эфир (1:2). Выход 15,9 г (81,4%), т. пл. 85—86°. Найдено %: С 64,08; Н 5,11; N 6,55. С₁₁Н₁₁NO₃. Вычислено %: С 64,42; Н 5,40; N 6,82. TCX, R₁ =0,25, R₁ =0,71, окись алюминия II степени активности, подвижная фаза—бензол-эфир (1:3), проявитель—пары йода.

(1,4-Бензодиоксан-2-)-3-амино-2-пропанол (IV). К 7,6 г (0,2 моля) АГЛ в 150 мл сухого тетрагидрофурана медленно прикапывают 19,5 г (0,1 моля) оксинитрила III в 100 мл сухого тетрагидрофурана. Реакционную смесь кипятят 18—20 час. При охлаждении прикапывают 25—30 мл воды, фильтруют. Осадок промывают тетрагидрофураном, сушат над сернокислым натрием. Отгоняют растворитель, перегоняют в вакууме. После перегонки вещество кристаллизуется, т. пл. 55°. Хроматография па силуфолозой пластинке выявила 2 пятна. Подвижная фаза—бутанолуксусная кислота—вода (4:5:1) (табл. 1).

Таблица 1

Амины 1									
1.5	Найдено, % Вычислено, %					Т. пл.			
	N	CI	N	Cı	R _I	гидро- хлорида, °C			
55,2	5,51	14,09	5,69	14,44	0,51; 0,70	120—121			
61,3	5,03	12,59	4,86	12,33	0,30: 0,59	165—166			
69,9	4,27	10,31	4,06	10,29	0,45; 0,75	125-126			
68,9	3,51	9,42	3,84	9,75	0,50; 0,83	147—148			
70,1	3,84	9,01	3,54	8,98	0,39; 0,70	118—120			
62,3	4,00	8,86	3,41	8,66	0,27; 0,83	129—130			
65,1	3,43	8,51	3,30	8,37	0,37; 0.88	134—135			
68,2	3,48	8,59	3,28	8,33	0,32; 0,88	176—177			
	55,2 61,3 69,9 68,9 70,1 62,3 65,1	Б5,2 5,51 61,3 5,03 69,9 4,27 68,9 3,51 70,1 3,84 62,3 4,00 65,1 3,43	Найдено. % S5,2 5,51 14,09 61,3 5,03 12,59 69,9 4,27 10,31 68,9 3,51 9,42 70,1 3,84 9,01 62,3 4,00 8,86 65,1 3,43 8,51	Найдено. % Вычис. N CI N 55,2 5,51 14,09 5,69 61,3 5,03 12,59 4,86 69,9 4,27 10,31 4,06 68,9 3,51 9,42 3,84 70,1 3,84 9,01 3,54 62,3 4,00 8,86 3,41 65,1 3,43 8,51 3,30	Байдено. °/о Вычислено. °/о 55,2 5,51 14,09 5,69 14,44 61,3 5,03 12,59 4,86 12,33 69,9 4,27 10,31 4,06 10,29 68,9 3,51 9,42 3,84 9,75 70,1 3,84 9,01 3,54 8,98 62,3 4,00 8,86 3,41 8,66 65,1 3,43 8,51 3,30 8,37	Белина Найдено. °/° Вычислено. °/° R 55,2 5,51 14,09 5,69 14,44 0,51; 0,70 61,3 5,03 12,59 4,86 12,33 0,30: 0,59 69,9 4,27 10,31 4,06 10,29 0,45; 0,75 68,9 3,51 9,42 3,84 9,75 0,50; 0,83 70,1 3,84 9,01 3,54 8,98 0,39; 0,70 62,3 4,00 8,86 3,41 8,66 0,27; 0,83 65,1 3,43 8,51 3,30 8,37 0,37; 0,88			

^{*} Найдено °/0: С 53,51; Н 6,42. Вычислено °/0: С 53,76; Н 6,56.

Амиды V. К раствору 0,01 моля амина и 0,011 моля пиридина в 70 мл абс. бензола прикапывают 0,01 моля хлорангидрида соответствующей кислоты в 30 мл абс. бензола. Смесь кипятят 10—12 час., охлаждают, промывают 3% раствором НСІ, затем 5% раствором соды. Отгоняют растворитель, остаток перекристаллизовывают из смеси эфир—ацетон (1:1) (табл. 2). Хроматография на силуфоловой пластинке проведена в системе бензол—ацетон (8:1).

Габлица 2

Амиды V									
R	Выход,	N, найдено	⁰ / ₀ вычис- лено	Т. пл., °С	R_{t}				
C ₆ H ₅ CH ₂ * C ₆ H ₅ CH ₂ CH ₂ 3.4(CH ₃ O) ₂ C ₆ H ₃ 3,4(CH ₃ O) ₂ C ₆ H ₃ CH ₂ 3.4(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CH ₂	90,1 89,7 85,4 80,1 87,2	4,11 3,95 3,45 3,48 3,69	4,30 4,10 3,74 3,61 3,48	112—113 128129 114—115 120—121 131 - 132	0,25; 0,49 0,31; 0,52 0,43; 0,70 0,51; 0,72 0,29; 0,62				
(C ₆ H ₅) ₂ CH	82,3	3,58	3,46	121-122	0,39; 0,56				

^{*} Найдено °/₆: С 69,28; Н 6,38. Вычислено °/₆: С 69,70; Н 6,46.

Амины I. К 0,02 моля АГЛ в 30 мл абс бензола при перемешивании прикапывают 0,01 моля амида в 80 мл абс. бензола. Смесь кипятят с обратным холодильником 10—12 час. и при охлаждении разлагают 10—15 мл воды, осадок отсасывают и промывают бензолом. Фильтрат сушат, отгоняют растворитель. Амины І—тягучие маслообразные, быстро карбонизирующиеся на воздухе вещества, охарактеризованы в виде гидрохлоридов. Гидрохлориды перекристаллизованы из смеси эфир—спирт, 3:1.

Чистота аминов подтверждена хроматографированием на силуфоловой пластинке в системе бутанол—уксусная кислота—вода (4:5:1). Об-

наружены два пятна, соответствующие диастереоизомерам.

Данные аминов I приведены в табл. 1.

1,4-ԲԵՆԶՈԴԻՕՔՍԱՆԻ ԱԾԱՆՑՅԱԼՆԵՐ

X. (1,4-ԻՆՆՋՈԴԻՕՔՍԱՆ-2)-2-ԱՄԻՆԱՊՐՈՊԱՆՈԼԻ ՄԻ ՔԱՆԻ N-ԱՐԻՎԱԼԿԻՀԱՄԻՆԱԱԾԱՆՑՅԱԼՆԵՐ

E. U. VUPTUPSUD, V. O. QUPTUDSUD, Z. V. UQUASUD L U. V. DUSPOBUD

(1,4-Բենզոդիօքսան-2-)-ամինապրոպանոլի և արիլալկիլկարբոնանքուների քլորան՜չիդրիդների փոխազդմամբ ստացված են ամիդներ, որոնք վերականզնված են մինչև Համապատասխան ամիններ,

Ուսումնասիրված է վերջնական ամինների հիդրոքլորիդների ադրենոլիտիկ և սիմպատոլիտիկ ակտիվությունը։

DERIVATIVES OF BENZODIOXANES

X. SOME N-ARYLALKYLAMINE DERIVATIVES OF (1,4-BENZODIOXAN-2)-3-AMINO-2-PROPANOL

E. A. MARKARIAN, S. O. VARTANIAN, H. M. AVAKIAN and A. S. TSATINIAN

By the interaction of (1,4-benzodioxan-2)-3-amino-2-propanol with chloranhydrides of arylalkil carbonic acids amides have been obtained which have been reduced by LiAlH4 to the corresponding amines. Hydrochlorides of these amines display sympatholytic activity.

ЛИТЕРАТУРА

- 1. Э. А. Маркарян, С. О. Вартанян, О. М. Авакян, А. С. Цатинян, Арм. хим. ж., 28, 323 (1975).
- 2. Э. А. Маркарян, С. О. Вартанян, О. М. Авакян, А. С. Цатинян, Ары. хим. ж., 25, 1017 (1972).
- 3. S. Kline, Бельг. пат. 634,853 (1964); [С. А., 63, 9958 (1951)].