XXVIII, № 10, 1975

КРАТКИЕ СООБЩЕНИЯ

УЛК 541.1+546.35+536 36+456.654

ИССЛЕДОВАНИЕ ХИМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ В СИСТЕМЕ Rb₃AIF₆—Cs₃L₂F₆—Cs₃AIF₆

Г. Г. БАБАЯН, Р. Т. МКРТЧЯН и К. А. ТЕР-АРАКЕЛЯН

Ереванский государственный университет

Поступило 16 XI 1973

Методами термического, кристаллооптического и рентгенографического анализов исследована система Rb₃AlF₆—Cs₃LaF₆—Cs₃AlF₆ и построена диаграмма плавкости. Поверхность системы состоит из шести полей первичной кристаллизации, которые сходятся в пяти нонвариантных точках при 682, 730, 730, 736, 744°.

Экспериментальная часть

Методика исследований, исходные вещества и синтез компонентов приведены в [1]. Исследованы три двойные системы:

$$Cs_3LaF_6-Cs_3AiF_6$$
 [1], $Rb_3AiF_6-Cs_3AiF_6$ [2] и $Rb_3AiF_6-Cs_3LaF_6$ [3]

Доказана индивидуальность обнаруженных в них соединений. На основании исследования семи внутренних политермических разрезов [4] построена днаграмма плавкости тройной системы (рис.). Определены границы полей кристаллизации фаз и их рельеф. Изотермы проведены через 25°.

Характер изучаемой системы определяется наличием в ней двойных соединений $Cs_3AlF_6 \cdot 9Cs_3LaF_6$; $2Cs_3AlF_6 \cdot 5Cs_3LaF_6$; $9Cs_3AlF_6 \cdot 11Cs_3LaF_6$ и твердых растворов (Rb, Cs) $AlF_6 \cdot \alpha$, (Rb, Cs) $LaF_6 \cdot AlF_6 \cdot \pi$, сохраняющих устойчивость внутри системы.

Ввиду наличия у соединения $Cs_3AlF_6 \cdot 9Cs_3LaF_6$ полиморфного перехода при 730°, что выше температуры тройной эвтектики, поле кристаллизации низкотемпературной модификации β - $Cs_3AlF_6 \cdot 9Cs_3LaF_6$ находится на поверхности кристаллизации системы. Анализ диатраммы плавкости тройной системы Rb_3AlF_6 — Cs_3LaF_6 — Cs_3AlF_6 не выявил поля кристаллизации тройного соединения, однако антиклинальный характер складок изотермы в средней части диаграммы (ближе к углу Cs_3LaF_6) указывает на химическое взаимодействие в этой области диаграммы и

возможность образования сильно диссоципрованного тройного соединения.

Координаты ноивариантных точек и составы равновесных фаз приведены в таблице. Температура кристаллизации тройной эвтектики (682°) на 38° ниже температуры кристаллизации двойной эвтектики (720°) в системе Cs_3LaF_6 — Cs_3AlF_6 , что представляет интерес для получения низкоплавких сплавов.

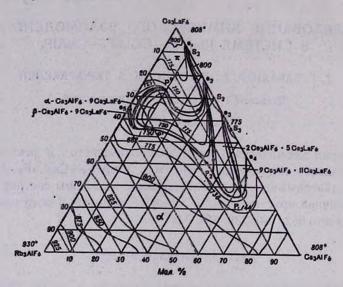


Рис. Диаграмма плавкости системы Rb3AlF6-Cs3LaF6-Cs3AlF6.

 Таблица

 Координаты нонвариантных точек и составы равновесных фаз

Обозначе-	Координаты точек				100	10000
	темпера- тура, °С	состав, мол. °/о			Равновесные фазы	Процесс
		Rb3AlF6	:Cs ₃ LaF ₆	Cs ₃ AIF ₆	тавловесные фазы	процесс
P_1	744	11,2	23,8	65,0	тв. р. α-9Cs ₃ A1F ₆ ·11Cs ₃ LaF ₆ — —2Cs ₃ A1F ₆ ·5Cs ₃ LaF ₆	перитектика
P ₂	736	18,5	32,7	50,8	тв. р. α-2Cs ₃ AlF ₆ ·5Cs ₃ LaF ₆ — —α-Cs ₃ AlP ₆ ·9Cs ₃ LaF ₆	перитектика
P'	730	27,2	54,1	18,7	тв. р. α-α-Cs ₃ AlF ₆ ·9Cs ₃ LaF ₆ - -β-Cs ₃ AlF ₆ ·9Cs ₃ LaF ₆	полныорфизм
P*	730	15,8	71,9	12,3	тв. р. π—α-Cs ₃ AiF ₆ ·9Cs ₃ LaF ₆ — —β-Cs ₃ AiF ₆ ·9Cs ₃ LaF ₆	полиморфизм
E	682	38,0	57,8	4,2	τΒ. p. π-β-Cs ₃ A1F ₄ ·9Cs ₃ LaF ₆ -	эвтектика

ЛИТЕРАТУРА

- 1. Г. Г. Бабаян, Р. Т. Мкртчян, К. А. Тер-Аракелян, С. Г. Гамбарян, Арм. хим. ж., 26, 141 (1973).
- 2. Г. Г. Бабаян, К. А. Тер-Аракелян, Р. Т. Мкртчян, Арм хим. ж., 23, 892 (1970).
- 3. Г. Г. Бабаян, Р. Т. Мкртчян, К. А. Тер-Аракелян, С. Г. Гамбарян, Уч. зап. ЕГУ, № 1, 130 (1973).
- 4. Г. Г. Бабоян, Р. Т. Мкртчян, К. А. Тер-Аракелян, Арм хим. ж., 26, 144 (1973).