Д Ц З Ч Ц Ч Ц Ъ Р Р Р Ц Ч Ц Ъ Ц Г И Ц Ч Р Р АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXVII, № 3, 1974

УДК 542..91+547 333

СИНТЕЗ И ПРЕВРАЩЕНИЯ В, у-НЕПРЕДЕЛЬНЫХ АМИНОВ

XVII. МНОГОКРАТНАЯ РЕАКЦИЯ МЕНШУТКИНА В РЯДУ β,γ-НЕПРЕДЕЛЬНЫХ АМИНОВ, СОДЕРЖАЩИХ АЛЛИЛЬНЫЙ БРОМ В δ-ПОЛОЖЕНИИ К АЗОТУ

Г. Т. МАРТИРОСЯН, Э. М. АРАКЕЛЯН, Н. М. ДАВТЯН, Г. Е. КРБЕКЯН и А. В. ГЕВОРКЯН

Всесоюзный научно-исследовательский и проектный институт полимерных материалов, Ереван

Поступило 12 XII 1972

Показано, что 1-дналкиламино-4-бромбутены-2, -4-бром-3-метилбутены-2,4-бром-3жлорбутены-2 при стоянии подвергаются многократной реакции Меншуткина, приводя к водорастворимым линейным полимерам с аммонийным азотом в цепи.

Табл. 1, библ. ссылок 2.

транс-1,4-Дибромиды диенов были использованы в синтезе различных аминов и аммониевых солей [1]. В частности, недавно одним из нас совместно с Бабаян и Гюльназаряном, был разработан метод получения несимметричных 1,4-диаминов взаимодействием β-диалкиламинопропионитрила с транс-1,4-дибромидами диенов в эфире или другом неполярном растворителе с последующим действием вторичным амином и щелочью на образовавшуюся соль аммония [2].

При попытке получить *транс-1*-диметиламино-4-бромбутен-2 щелочным расщеплением соответствующей соли с β-цианэтильной группой нами было замечено, что из эфирного раствора амина при стоянии выпадает белая соль, не имеющая четкой температуры плавления (табл.).

Обильное солеобразование происходит и при попытке перегнать вышеупомянутый амин.

Внутримолекулярное нуклюфильное замещение с образованием бромистого N,N-диметилпирролия исключалось транс-строением ненасыщенной группы и исключало образование циклической диаммониевой соли. Оставалось предположить, что амин при стоянии или нагревании подвергается многократной реакции Меншуткина, приводя к полимерной аммониевой соли с аммонийным азотом в полимерной цепи:

$$(CH_3)_3$$
NCH₂C=CCH₂Br $\rightarrow n$ или $n(CH_3)_2$ NCH₂CH=CHCH₂ $\rightarrow n$ $\rightarrow n$

Образование полиаммониевой соли нами доказано на основании данных по характеристической вязкости растворов этих солей в воде или метаноле.

Измерения характеристической вязкости растворов проводили модифицированным вискозиметром типа Уббелоде с висячим уровнем при $t\!=\!20^\circ$. Данные по $[\eta]$ представлены в таблице.

Следует подчеркнуть, что для водных растворов синтезированных нами продуктов, несмотря на наличие в звеньях заряженных функциональных групп, концентрационная зависимость вязкости описывается обычным уравнением Хаггинса $\frac{\eta_{yx}}{C} = [\eta] + \mathcal{K}'[\eta] \, C + \cdots$, предложенным

для нейтральных полимеров. Это обстоятельство, очевидно, объясняется небольшим размером растворенных макромолекул, свойственным олигомерным цепям.

Для качественного сравнения этих образцов в таблице приведены также значения их молекулярных весов. Для определения \overline{M}_{\bullet} мы исходили из тех соображений, что для подобных нейтральных макромолекул в растворе сохраняется обычная клубкообразная структура и поэтому значение показателя степени α в общеизвестном уравнении вязкости Марка—Куна—Хаувинка принималось равным 0,7.

При нагревании спиртового раствора полимера происходит частичная деполимеризация, о чем свидетельствует уменьшение характеристической вязкости (табл.).

При осуществлении реакции в среде спирта, т. е. при взаимодействии моноаммониевой соли со спиртовой щелочью, также получается полимер, имеющий примерно такую же низкую вязкость.

Полиаммониевые соли нами получены также из дибромидов изопрена и хлоропрена:

$$R_{2}N \xrightarrow{CH_{2}CH_{2}CN} \xrightarrow{\overline{OH}} [R_{2}NCH_{2}CH = CXCH_{2}Br_{2}] \longrightarrow$$

$$R_{2}NCH_{2}CH = CXCH_{1} - \left[-\frac{1}{N}(R)_{2}(CH_{2}CH = CXCH_{2} -) - \right] - CH_{2}CH = CXCH_{2}Br$$

$$R = CH_{3}, (CH_{2})_{5}; X = H, CH_{3}, CI$$

	Исхо	цная с	оль	4 -	Условия опыта				%					Br, °/.	
No onstra		R'	R‴	Щелочь	t, °C	время	раство- ритель	Полимер	Buxoa, º,	[η]	Средний мол. вес.	Т. пл., °С	Молекулярная формула	найдено	лено
1	СН	СНа	Н	NaOH	комн. т-ра	4 дня	афнр	$-[-(CH3)3NCH2CH = CHCH3-]a-$ \overline{Br}	64	0,22	22000	обуглин. выше 275	(C ₆ H ₁₂ BrN) ₂	44,21	44,93
2	CH,	CH ₃	Н	кон	72	14 час.	конвте		80,5	0,025	1000	_		45,33	44,93
3	CH ₃	CH ₃	Н	NaOH	65	50 час.	метанол		97,7	0,053	2900	175—210		44,98	44,93
4	СН3	CH,	сн,	кон	72	14 час.	втанол	$-[-(CH3)2NCH2CH=CCH3-]n$ $\overline{B_r}$ $CH3$	83,2	0.047	2400	78—125	(C ₇ H ₁₄ BrN) _n	41,38	41,66
5	CH,	СНа	сн,	NaOH	65	50 час.	метаяол		98,4	0,042	1960	_		41,44	41,66
•	СН,	CH ₃	CI	NaOH	комн. т-ра	4 дня	эфнр	$-[-(CH_3)_3 \overset{+}{\text{NCH}}_3 CH = CCH_3 -]_{\overline{n}}$ $\overline{B_r} \qquad CI$	33,0	0,04	1800	143—153	(C _s H ₁₁ ClBrN) _n	38, 14	37,64
7	CH,	CH3	Cı	кон	72	14 час.	этанол		84,7	0,025	1000	120-153		37,53	37,64
	(СН	2)54	н	кон	72	12 час.		$-[-(CH_2)_5$ NCH ₂ CH=CHCH ₂] _n	91,7	0,03	1250	гигроск.	(C ₉ H ₁₆ BrN) _n	36,75	36 ,69
!	(CH	2)6(СН3	кон	72	18 час.		$-[-(CH_3)_8 \overset{+}{\text{NCH}}_2 CH = CCH_3 -]_{\overline{n}}$ $\overline{B_T} \overset{+}{C}H_3$	90,5	0,04	1800	гигроск.	(C ₁₀ H ₁₈ BrN) _n	34,44	34,48
10	(CH	2)5(CI	кон	72	12 час.		-[(CH ₃) ₈ NCH ₃ CH=CCH ₃ -] _n	95,04	0,04	1800	гигроск.	(C ₉ H ₁₅ CIBrN) _n	31,87	32,07

^{*} При нагревании этого полимера в метаноде (3 г в 20 мл) 50 час. при 65° получается полимер с $[\eta] = 0.12$ ($\overline{M}_{v} = 7800$).

Полученные полимеры хорошо растворяются в воде, метаноле, этаноле, не растворяются в эфире и бензоле.

Экспериментальная часть

Исходные моноаммониевые соли получены взаимодействием β-диалкиламинопропионитрилов с *транс*-1,4-дибромидами диенов в среде сухого эфира по [2].

Поличетвертизация 1-диалкиламино-3-замещенных-4-бромбутенов-2.
а) При комнатной температуре в эфире к 0,1 моля исходной соли добавляют 100 мл эфира и при перемещивании и охлаждении водой прикапывают тройное мольное количество 50% водного раствора едкого натра. Эфирный слой отделяют, водный дважды экстрагируют эфиром (по 50 мл). Через некоторое время начинает выпадать полиаммониевая соль. Данные приведены в таблице. б) Принапревании спиртовой щелочью к раствору 0,1 моля исходной соли в 50 мл спирта приливают раствор 0,1 моля едкого кали в 30 мл спирта. После отфильтрования осевшего бромистого калия (выход почти количественный) фильтрат напревают. Полимеры выделяют отгонкой растворителя. Данные приведены в таблице.

ЛИТЕРАТУРА

- 1. Г. Б. Багдасарян, М. Г. Инджикян, А. Т. Бабаян, ЖОрХ, 2, 1987 (1966); М. Г. Инджикян, А. А. Григорян, М. Ж. Овакимян, А. Т. Бабаян, Изв. АН Арм. ССР, ХН, 18, 493 (1965).
- 2. А. Т. Бабаян, Г. Т. Мартиросян, А. Х. Гюльназарян, Д. В. Григорян, Арм. хим. ж., 25, 228 (1972).