XXVII, № 3, 1974

УДК 542.91+547.298.1+547.474.3+547.811

СИНТЕЗ НЕКОТОРЫХ АМИДОВ ГЛИЦИДНЫХ КИСЛОТ ГЕТЕРОЦИКЛИЧЕСКОГО РЯДА

С. А. ВАРТАНЯН, С. А. МИНАСЯН и Р. А. КУРОЯН

Институт тонкой органической химин им. А. Л. Миджояна АН Армянской ССР, Ереван

Поступило 2 11 1973

Синтезирован ряд амидов глицидных кислот конденсацией шестычленных гетероциклических кетонов с амидами хлоруксусной кислоты по реакции Дарзана и аминолизом эфиров глицидных кислот.

Табл. 1, библ. ссылок 2.

Известно, что некоторые амиды глицидных кислот обладают физиологической активностью [1].

С целью изыскания новых физиологически активных препаратов синтезирован ряд амидов глицидных кислот, содержащих шестичленные гетероциклы. Синтез по реакции Дарзана осуществлен конденсацией тетрагидропиран-4-онов, тетрагидротиопиран-4-онов и 4-пиперидонов с амидами хлоруксусной кислоты. В качестве конденсирующего агента были применены металлический натрий и этилат натрия. Более высокие выходы получаются при использовании первого.

Первичные и N-замещенные метиламиды в основном являются кристаллическими веществами. Очистка их от непрореалировавших исходных веществ и побочных продуктов затруднительна при применении реакции Дарзана. Поэтому синтез низших амидов глицидных кислот осуществлен аминолизом полученных ранее эфиров глицидных кислот [2], превращающихся в среде аммиака или метиламина и каталитического количества воды в соответствующие амиды.

Физико-химические константы амидов, полученных обоими методами, доказывают их структуру.

Армянский химический журнал. XXVII, 3-5

						_		
x	R ₁	R,	R ₃	R ₄	R ₅	Выход, 0/0	Т. кип., •С/ <i>мм</i>	Т. пл., °C
1	2	3	4	5.	6	7	8	9
0	сн,	CH ₃	н	н	NH ₂	50	_	85
0	CH,	CH ₃	Н	Н	NHCH,	61		127
0	CH,	CH ₃	Н	Н	N(CH ₃) ₃	45	129—133/2	
0	CH,	CH,	Н	H	N(C ₂ H ₅) ₃	36	142-145/2	-
0	СН,	СНз	н	Н	0	40	172—175/2	
.0	CH ₃	CH ₃	Н	Н	NHC ₆ H ₅	51		244
0	CH ₃	C ₂ H ₅	Н	Н	NH ₂	60	160—164,4	
0	CH ₃	C ₂ H ₅	Н	Н	N(CH ₃) ₃	37	151—154/2	
0	CH ₃	C ₂ H ₅	Н	Н	N(C2H5)2	37	152—156/1	
CH ₃ N	Н	Н	CH ₃	CH ₃	NH ₃	52	-1.5	172
CH ₃ N	Н	Н	CH ₃	CH ₃	NHCH ₃	58		164
CH ₃ N	Н	Н	CH3	CH3	N(CH ₃) ₃	46	136 —139/2	

2/ /		<u>Анализ, °/</u>								
100	200	C		H		N		S		
Молекулярная формула		найдено	вычис-	найдено	BLATIC-	найдено	BENTIIC-	найдено	вычис-	
10	11	12	13	14	15	16	17	18	19	
C ₉ H ₁₅ NO ₃ ⁽⁶⁾		58,73	59,40	8,21	8,16	7,71	7,56	3	1973	
C ₁₀ H ₁₇ NO ₃ ⁽⁶⁾	- 2	60,43	60,28	8,51	8,60	7,03	7,03		123	
C ₁₁ H ₁₉ NO ₃ (a, 6)	1,4800	62,11	61,94	9,13	8,98	6,32	6,57		100	
C ₁₃ H ₃₃ NO ₃ ^(a)	1,4770	64,83	64,69	9,45	9,60	6,24	5,80	200	1169	
C ₁₃ H ₃₁ NO ₄ ^(a)	1,5030	61,58	61,16	8,38	8,29	5,86	5,48		115	
C ₁₅ H ₁₉ NO ₃ ^(a)		69,18	68,94	7,42	7,33	5,42	5,36			
C ₁₀ H ₁₇ NO ₃ (6)	1,4930	60.52	60,28	8,76	8,60	7,12	7,03	0.00		
C ₁₃ H ₃₁ NO ₃ (a)	1,4830	63,82	63,41	9,17	9,31	6,52	6,16			
C ₁₄ H ₂₈ NO ₃ ^(a)	1,4810	66,21	65,85	10,07	9,87	5,32	5,48			
$C_{10}H_{18}N_3O_3^{(5)}$	0.00	60,41	60.57	9,38	9, 15	13,93	14,13			
C11H20N2O2(6)		62,65	62,23	9,29	9,50	13,55	13,20		100	
C ₁₂ H ₂₃ N ₂ O ₃ ^(a, 6)	1,4920	63,03	63,68	10,0	9,80	12,31	12,38		1	

1	2	3	4	5	6	7	8	9	10
CH ₃ N	Н	Н	СНа	СН ₃	N(C ₃ H ₅) ₂	37	145—149/2		C ₁₄ H ₂₆ N ₂ O ₂ (8)
CH ₃ N	Н	Н	СНа	СН3	N	30	176—179,2	30	C ₁₄ H ₂₄ N ₂ O ₃ ^(a)
CH ₃ N	Н	Н	CH	СН	NHC.H.	48	- 1 A	252	C ₁₆ H ₂₂ N ₂ O ₂ (a)
CH ₂ N	н	CH ₃	CH ₃	CH ₃	NH ₂	71	- / /	181	C11H20N2O2(6)
CH ₃ N	Н	CH ₃	CH3	CH ₂	NHCH ₃	56	156—159/4		C12H22N2O2(6)
CH ₃ N	Н	CH,	CH ₃	CH,	N(CH ₃) ₃	27	148-151/2		C ₁₃ H ₂₄ N ₂ O ₂ (a)
CH ₃ N	Н	CH ₃	CH,	CH ₃	N(C,H,),	40	142-146/1		C ₁₅ H ₂₈ N ₂ O ₂ ⁽⁸⁾
S	CH ₃	CH ₃	Н	Н	NHCH,	75		126	C10H17SNO2(6)
S	CH ₃	CH ₃	Н	Н	N(CH ₃) ₂	42	3.00	75	C ₁₁ H ₁₉ SNO ₂ (a)
S	Н	Н	CH ₃	CH ₃	NHCH ₃	72	1000	137	C ₁₀ H ₁₇ SNO ₂ (6)
S	Н	Н	CH ₃	CH ₃	N(C ₂ H ₅) ₂	31	186-188/4		C ₁₃ H ₂₃ SNO ₂ ⁽⁸⁾

⁽а) получен реакцией Дарзана; (б) — аминолизом глицидных эфиров.

Продолжение таблицы

11	12	13	14	15	16	17	18	19
1,4870	66,30	66,10	10,50	10,30	11,38	11,02		
1,5080	63,42	63,03	8,83	9,01	10,76	10,44	7	1
	70,39	70,04	7,96	8,08	10,23	10,21		100
20	62,28	62,23	9,75	9,50	12,81	13,20		
1,4985	64,05	63,68	9,52	9,80	12,41	12,38		
1,4930	65,14	64,96	9,87	10,06	12,01	11,65	100	130
1,4880	67,39	67,12	10,16	10,52	9,93	10,44		
1000	55,23	55,78	7,87	7,96	6,63	6,50	14,70	14,89
	57,74	58,11	7,78	7,54	6,21	6,16	13,82	14,10
	55,65	55,78	8,02	7,96	6,26	6,50	15,38	14,89
1,5110	60,89	60,66	8,76	9,00	5,37	5,44	12,31	12,46

ИК спектры полученных амидов—амидные и эпоксидные полосы в области 1680 и 1200 $c.м.^{-1}$.

Полученные амиды переданы на фармакологическое испытание.

Экспериментальная часть

Примеры получения амидов глицидных кислот. а) К суспензии 2,6 г (0,113 г-ат) натрия в 40 мл толуола прикапывают в течение 30 мин. смесь 13,7 г (0,113 моля) N-диметилхлорацетамида и 12,8 г (0,1 моля) 2,2-диметилтетрагидропиран-4-она. Реакцию начинают при 60° и до окончания прикапывания температуру реакционной смеси поддерживают в пределах 60—70°. Затем содержимое колбы нагревают на водяной бане 3—4 часа, охлаждают до 20°, медленно добавляют 20 мл воды, экстрагируют эфиром и сущат над сульфатом магния. После удаления эфира и толуола остаток перегоняют в вакууме.

6) В 100 мл стеклянную ампулу помещают 0,025 моля глицидного эфира и 1—2 капли воды, смесь охлаждают до —40° и пропускают в нее газообразный аммиак до тех пор, пока объем сконденсированного жидкого аммиака не достигнет примерно половины объема глицидного эфира. Ампулу запаивают и оставляют несколько дней до образования кристаллической массы. После удаления непрореагировавшего аммиака массу фильтруют, промывают эфиром и перекристаллизовывают из петролейного эфира. Выходы и некоторые физико-химиеские константы полученных амидов приведены в таблице. Кристаллические производные амидов с N-содержащими гетероциклами крайне гигроскопичны.

ՀԵՏԵՐՈՑԻԿԼԻԿ ՇԱՐՔԻ ԳԼԻՑԻԴԱՑԻՆ ԹԹՈՒՆԵՐԻ ՄԻ ՔԱՆԻ ԱՄԻԴՆԵՐԻ ՍԻՆԹԵՉ

Ս. ՎԱՐԴԱՅԱՆ, Ս. Ա. ՄԻՆԱՍՅԱՆ և Ռ. Հ. ԿՈՒՌՈՅԱՆ

Ֆարմակոլոգիական ուտումնասիրությունների նպատակով Դարզանի ռեակցիայի հիման վրա վեցանդամանի հետերոցիկլիկ կետոնների և ջլորքացախաթթվի ամիդների կոնդենսմամբ սինթեզվել են հետերոցիկլիկ գլիցիդային թթուների մի շարք ամիդներ։ Այդ ամիդները ստացվել են նաև նաամիդների փոխազդման ռեակցիայով։

Սինթեզված ամիդները հանձնված են փորձարկման։

SYNTHESIS OF SOME GLYCIDIC ACID AMIDES OF HETEROCYCLIC SERIES

S. H. VARTANIAN, S. A. MINASSIAN and R. H. KOUROYAN

By Darzan reaction several heterocyclic glycidic acid amides have been synthesised by the condensation of six-membered heterocyclic ketones with cloroacetic acid amides. These amides have been also obtained by the interaction of previously synthesised glycidic acid esters with corresponding amines.

ЛИТЕРАТУРА

- 1. E. Fourneau, J. R. Billeter, D. Bovet, J. pharm. chim., 19, 49 (1934).
- 2. С. А. Вартанян, Р. А. Куроян, С. А. Минасян, Арм. хим. ж., 25, 173 (1972).