XXVII, № 8, 1974

ПИСЬМА В РЕДАКЦИЮ

УДК 547.321/.324:665.666.24.546.562

ГАЛОГЕНИРОВАНИЕ СОПРЯЖЕННЫХ ДИЕНОВ ГАЛОГЕНИДАМИ Сu (II)

Нами показано, что известный способ галогенирования органических соединений солями Cu (II) [1] с услехом может быть применен к производным диенов, содержаних, по крайней мере, одну незамещенную метиленовую пруппу. Галогенированию были подвергнуты моноди-, три- и тетрагалоиддиены, а также изспрен в различных растворителях. Оказалось, что галогенирование лучше всего проводить в ацетонитрильных растворах CuCl₂ и CuBr₂. В метанольных растворах можно осуществить только бромирование.

К раствору 100 мл CH₃CN и 0,2 моля CuCl₂ при перемешивании и 70—75° добавлялось 0,1 моля диена. При бромировании к раствору 60 мл CH₃OH и 0,2 моля CuBr₂ добавлялось 0,1 моля диена при перемешивании и 60°. Продукты реакции экстрагировались эфиром, сушились над CaCl₂ и перегонялись. Данные приведены в таблице.

X=Cl или Br

Интересно отметить что полученные дигалогениды диенов в водноаммиачных растворах CuCl снова дегалогенируются, образуя с больцими выходами (60—75%) исходные диены. Реакция идет гладко и завершается в гечение 5—10 мин. при 30—35°. Соотношение реагентов: 0,1 моля дигалогенида, 0,2 моля CuCl, 100 мл 10% NH₄OH

X = CI или Br; Y = CI, H или CH_3 .

	Усл	овня реаки	HII
Исходное вещество	раство- ритель	ревгент	продолж, реакции, часы
CH ₂ =CCICH=CH ₂	СН³ОН	CuBr ₂	2
CH ₂ =CCICH=CH ₃	CH ₃ CN	CuCl ₃	4
CH ₂ =CCICCI=CH ₃	СН₃ОН	CuBr ₂	3
CH ₂ =CCICCI=CH ₂	CH ₃ CN	CuCl ₂	2
CCI ₂ =CCICH=CH ₂	СН₃ОН	CuBr ₃	1
CCI ₂ =CCICH=CH ₂	CH ₃ CN	CuCl ₂	4
CHCI = CCICCI = CHCI**	CH3CN	CuBr ₃	20
CH ₂ =C(CH ₃)CH=CH ₂	CH3CN	CuCl ₂	2
CH ₂ =C(CH ₃)CH=CH ₂	CH ₃ CN	CuBr ₃	1
5 -62			1

^{*} Выходы рассчитаны на CuCl $_2$.
** Т. кип. 59—60.5°/10 .и.и; п $_{\rm D}^{20}$ 1,5310; ${\rm d}_4^{20}$ 1,5085.

Таблица

Продукты реакции	Выход.	Т. кип., °С/мм	n ²⁰	d ₄ ²⁰	
CII3BrCCI=CHCH3Br	90,0	76—77/10	1,5795	1,9490	
CH2CICCI=CHCH2CI	87,4*	6769/10	1,5155	1.3732	
CH2BrCCI=CCICH2Br	94,5	84-86/2	1, 5 925	2,0710	
CH3CICCI=CCICH3CI	57,0	47—50/1,5 т. пл. 32	1,5320	1,4999	
CCI ₂ =CCICHBrCH ₂ Br	94.0	7678/1,5	1,5880	2,0910	
CCI2=CCICHCICH2CI	57,0	80-81/10	1,5310	1,5713	
изомер исходного	60,7	т. пл. 50	-	-	
CH,CICCH,=CHCH,CI	33,0*	56-58/10	1,4940	1,1530	
CH ₃ =C(CH ₃)CHCICH ₃ Cl	10,0*	64,50	1,4713	1,1270	
CH ₂ BrC(CH ₃) = CHCH ₃ Br	58,7	85—87/10	1,5628	1,7952	

ЛИТЕРАТУРА

1. G. E. Castro, E. J. Gaughan, D. C. Owsley, J. Org. Chem., 30, 587 (1965); W. C. Balrd, J. H. Surridge, M. Buza, J. Org. Chem., 36, 3324 (1971).

К. А. КУРГИНЯН, Р. Г. КАРАЛЕТЯН. Г. А. ЧУХАДЖЯН

Всесоюзный научно-исследовательский и проектими институт полимерных продуктов

Поступило 19 IV 1974