XXVII, № 1, 1974

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 542.91+661.7173

СИНТЕЗ ДИ-(2-ХЛОРАЛКИЛ) АМИНОВ

М. Г. АВЕТЯН, О. С. ЦАТИНЯН и С. Г. МАЦОЯН Институт органической химии АН Армянской ССР (Ереван) Поступило 26 III 1973

Взаимодействием гидрохлоридов ди (2-оксиалкил) аминов с хлористым тионилом в среде петролейного эфира синтезированы гидрохлориды ди (2-хлоралкил) аминов. Исходные ди (2-оксиалкил) амины получены алхилированием моноэтаноламина и пропаноламина с соответствующими с-хлороспиртами. Некоторые полученые ди (2-хлоралкил) амины превращены в N-метилпроизводные по реакции Лейкарта.

Табл. 3. библ. ссылок 5.

Наряду с большим числом известных в настоящее время веществ с цитотоксической ди(2-хлорэтил) аминной группой соединения, содержащие ди(2-хлоралкил) аминогруппу, оставались до сих пор малоизученными.

С целью расширения круга потенциальных противоопухолевых соединений типа «азотистых ипритов» в настоящей работе предпринят синтез ряда ди(2-хлоралкил) аминов, осуществленный по схеме:

 $R = H, CH_3, R' = H, CH_3, C_2H_5; R'' = H, CH_3, C_2H_5, C_3H_7, C_4H_9, mpem-C_4H_1.$

Исходные а-хлороспирты получены взаимодействием алкилмагнийгалогенида с эпихлоргидрином или с хлоруксусным эфиром по описанной методике [1—3].

Алкилирование моноэтаноламина или 2-оксипропиламина с помощью указанных α-хлороспиртов проводили при комнатной температуре при соотношении компонентов 5:1.

Синтез гидрохлоридов ди (2-хлоралкил) аминов осуществлен взаимодействием соответствующих гидрохлоридов ди (2-оксиалкил) аминов с хлористым тионилом в среде петролейного эфира. При проведении реакции замещения гидроксила аминоспирта на хлор с помощью хлористого тионила в хлороформе или бензоле [4] значительная часть продукта осмоляется.

При алкилировании гидрохлоридов некоторых ди (2-хлоралкил) аминов по реакции Лейкарта [5] с применением формальдегида и муравьиной кислоты получены их N-метильные производные.

Выходы и некоторые физико-химические свойства, а также данные анализа синтезированных ди (2-оксиалкил) аминов, гидрохлоридов ди (2-хлоралкил) аминов и оксалатов N-метил-ди (2-хлоралкил) аминов приведены в табл. 1, 2 и 3, соответственно. О результатах фармакологического изучения будет сообщено отдельно.

Экспериментальная часть

 $\mathcal{L}u(2$ -оксиалкил) амины. К 0,5 моля этаноламина или 2-оксипропиламина прибавляют 0,1 моля соответствующего α -хлороспирта и смесь перемешивают при комнатной температуре в течение 4 час., затем нейтрализуют раствором 4 ϵ едкого натра в 50 мл метилового спирта. Осадок фильтруют и после отгонки из фильтрата метилового спирта и избытка аминоспирта продукт перегоняют в вакууме (табл. 1).

CH₂CH(OH)R

CH₂CH(OH)R'R*

- Chip(Chi)A										
R	R R, K, BMXOA, 0/6		Т. кип., °С/ <i>мм</i>	d ₄ ²⁰ n _D ²⁰		Молеку- лярная формула	найдено вычис-			
н	СН,	СН3	60,15	95/1	1,4650	1,0198	C ₆ H ₁₅ NO ₂	10,59	10,51	
H	C ₂ H ₅	C ₂ H ₅	65,34	116/1		_	C ₈ H ₁₀ NO ₂	8.80	8,69	
CH ₃	н	Н	66,00	225 - 230/680	1,4600	1,0397	C ₅ H ₁₃ NO ₂	12,64	12.60	
C ₂ H ₅	Н	Н	58,15	108/1	1,4691	1,0231	C.H.SNO	10,60	10,51	
C ₃ H ₇	Н	Н	51,62	125/2	1,4670	1,0115	C,H,NO,	9,70	9,51	
C ₄ H ₉	Н	Н	59.25	129—130/1	1,4658	0,9980	CaH ₁₉ NO ₂	8,53	8,69	
mpem-C4H	H	H	60,25	130/2	1,4640	0.9912	CaHIO2	8,63	8,69	
C ₆ H ₅	Н	Н	36,80	165—170/1	-	_	C10H15NO2	7,87	7,73	
CH ₃	CH ₃	Н	64,37	245-250/680		_	C.H.SNO	10,69	10,51	
C ₂ H ₅	CH ₃	Н	60,25	120/1	1,4532	0,9730	C ₇ H ₁₇ NO ₃	9,65	9,51	
C ₃ H ₇	CH ₃	Н	52,35	116/1	1,4670	0,9809	C ₈ H ₁₉ NO ₂	8.55	8,69	
C ₄ H _e	CH,	Н	73,31	137,1	-	_	C ₀ H ₃₁ NO ₂	8,02	7,99	
.mpem-C4H	CH ₃	Н	68,58	120/1	1,4630	0,9664	C,H21NO,	8,10	7,99	
CH ₃	C ₂ H ₅	C ₂ H ₅	60,20	145/2	-		C _B H ₃₁ NO ₃	8,13	7,99	
		-	1000	12 01 01-						

Гидрохлориды ди (2-хлоралкил) аминов. 0,5 моля соответствующего ди (2-оксиалкил) амина при охлаждении нейтрализуют разбавленной соляной кислотой (1:1). После отгонки воды в вакууме к сырому гидрохлориду ди (2-оксиалкил) амина добавляют 100 мл петролейного эфира. Из капельной воронки при перемешивании в течение 2 час. добавляют 233,8 г (1,4 моля) хлористого тионила, растворенного в 200 мл петролейного эфира. Реакционную смесь нагревают при 45—50° в течение 3—4 час. Избыток хлористого тионила и растворитель отгоняют в вакууме. Кристаллический продукт промывают петролейным эфиром, отфильтровывают (табл. 2) и перекристаллизовывают из ацетона.

.CHCIR Таблица 2

UNI	CH, CHCIR
HN;	CH-CCIR'S"
HCI	Criscon K

	R'	R"	n, 0/0	Т. пл., °C	10 10 100	Анализ, %				
R					Молекулярная	на	йдено	вычислено		
			Выход,		формула	N	CI (CI-)	N	CI (CI_)	
н	CH3	CH ₃	74,2	182	CahitaNCI3	6,84	(17,30)	6,81	(17, 25)	
Н	C ₂ H ₅	C ₂ H ₅	63,0	178	C ₈ H ₁₈ NCl ₃	6,15	(15,48)	6,06	(15,31)	
CH ₃	Н	Н	70,0	204	C ₅ H ₁₂ NCl ₃	7,55	55,50	7,27	55,26	
C ₂ H ₅	H	Н	80,0	180	C.H. NCI	6,84	(17,40)	6,81	(17, 25)	
C ₃ H ₇	Н	Н	69,0	168	C7H16NCI3	6,18	(16,24)	6,41	(16,22)	
C₄H,	Н	Н	73,5	175	C ₈ H ₁₈ NCl ₃	5,75	(15,41)	6,06	(15,31)	
mpem-C4H.	Н	Н	63,9	175	C ₈ H ₁₈ NCl ₃	6,64	(15,24)	6,06	(15,31)	
C ₆ H ₅	-11	Н	63,3	147	C ₁₀ H ₁₄ NCl ₃	6,08	41,91	5,40	41,61	
CH ₃	CH ₃	Н	83,4	196	C ₆ H ₁₄ NCl ₃	6,90	(17,34)	6,81	(17, 25)	
C ₂ H ₅	CH ₃	Н	77,2	178	C,H,NCI	6,20	(16,24)	6,41	(16,22)	
C ₂ H ₇	CH ₃	Н	61,3	145	C ₈ H ₁₈ NCl ₃	6,02	(15,34)	6,06	(15,31)	
C ₄ H ₉	CH ₃	H	73,2	137	C ₉ H ₂₀ NCl ₃	5,93	43,01	5,68	43,50	
npem-C4H.	CH ₃	H	64.3	130	C ₉ H ₂₀ NCl ₃	5,74	43,35	5,68	43,50	
CH ₃	C ₂ H ₅	C ₂ H ₅	72,9	185	C ₉ H ₂₀ NCl ₃	5,75	43,90	5.68	43,50	

Соли- N-метил-ди(2-хлоралкил) аминов. Метилирование гидрохлоридов некоторых ди(2-хлоралкил) аминов по Лейкарту проводили по обычной методике [5]. Ввиду того, что гидрохлориды N-метил-ди(2-хлоралкил) аминов, за исключением N-метил-2-хлорэтил-2'-хлорпропиламина, представляют собой гигроскопические, трудно кристаллизующиеся вещества, через основания они были превращены в соответствующие оксалаты (табл. 3).

Таблица 3

CH3CHCIR

147797	R'	Соли	д. %	Т. пл.,	THE RESERVE	Анализ, °/0			
R					Молекулярная	найдено		вычислено	
		Conn	Выход	°C	формула	N	CI	N	CI
н	СН	Гидрохлорид	70,4	105—106	C ₄ H ₁₄ NCl ₃	6,34	51,64	6,77	51,49
Н	C ₃ H ₄	Оксалат	74,3	100-102	C ₁₀ H ₁₉ NO ₄ Cl ₂	4.38	24,83	4,91	24,68
CH ₃	CH ₃	Оксалат	70,6	93-95	C ₉ H ₁₇ NO ₄ Cl ₂	5,24	26,01	5,10	25,86
CH3	C ₃ H ₇	Оксалат	68,5	120—123	C11H21NO (CI,	4,71	23,64	4,66	23,61
					1000				

ԴԻ-(2-ՔԼՈՐԱԼԿԻԼ)ԱՄԻՆՆԵՐԻ ՍԻՆԹԵԶ

U. 2. U4688UV, O. U. TUSPVBUV L U. A. UUBABUV

Դի-(2-օքսիալկիլ)ամինների հիդրոքլորիդների և Թիոնիլի քլորիդի փոխազդմամբ նավթային եթերի միջավայրում ստացվել են դի-(2-քլորալկիլ)-ամինների հիդրոքլորիդները, Ելանյութ դի-(2-օքսիալկիլ)ամինները ստացվել են մոնոէթանոլամինը և պրոպանոլամինը համապատասխան α-քլոր-սպիրտներով ալկիլելու միջոցով։

Լեյկարտի ռեակցիալով մի քանի դի-(2-քլորալկիլ)ամինների հիդրոքլորիդների ալկիլումով սինթեզվել են նրանց N-մեթիլային աժանցյալները։

THE SYNTHESIS OF DI-(2-CHLOROALKYL)AMINES

M. H. AVETIAN, O. S. TSATINIAN and S. G. MATSOYAN

Di-(2-Chloroalkyl) amines have been synthesised by the interaction of hydrochlorides of di-(2-oxyalkyl) amines with thionyl chloride in petroleum ether. The starting di-(2-oxyalkyl)amines have been obtained by alkylating monoethanolamine and propanolamine with the corresponding α -chloroalcohols. Some of the di-(2-chloroalkyl) amines are converted into N-methyl derivatives.

ЛИТЕРАТУРА

- 1. К. А. Красуский, ЖОХ, 6, 460 (1936).
- 2. K. C. Elderfield, J. Am. Chem. Soc., 68, 1516 (1946).
- 3. M. R. Dallbroux, M. H. Wahts, Bull. Soc. Chem. Belg., 29, 1956 (1906).
- 4. A. J. Sperlede, P. H. Hamm, J. Am. Chem. Soc., 78, 2556 (1956).
- Реакции и методы исследования органических соединений, т. 3. Изд. Госхимиздат, М., 1954, стр. 253.